山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (7): 37-43.doi: 10.6040/j.issn.1671-9352.4.2017.183
王霞1,2,张茜1,李俊余1,2,刘庆凤3
WANG Xia1,2, ZHANG Qian1, LI Jun-yu1,2, LIU Qing-feng3
摘要: 将粗糙集近似算子引入到三元概念分析中,定义了对象定向三元概念和属性定向三元概念。首先,基于三元背景中的三元关系提出了可能性算子和必然性算子,并研究了这两类诱导算子的性质。其次,基于这两类诱导算子定义了对象定向三元概念和属性定向三元概念。最后,构造了三元图更直观地描述对象定向三元概念和属性定向三元概念。
中图分类号:
[1] GANTER B, WILLE R. Formal concept analysis mathematical foundations[M]. New York: Springer, 1999. [2] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M] // RIVAL I. Ordered Sets. Dordrecht: Reidel, 1982: 445-470. [3] LEHMANN F, WILLE R. A triadic approach to formal concept analysis[C] // Conceptual Structures: Applications, Implementation and Theory. Heidelberg: Springer, 1995: 32-43. [4] WEI Ling, QIAN Ting, WAN Qing, et al. A research summary about triadic concept analysis[J]. International Journal of Machine Learning and Cybernetics. DOI 10.1007/s13042-016-0599-7 [5] 魏玲, 万青, 钱婷, 等. 三元概念分析综述[J]. 西北大学学报(自然科学版), 2014, 44(5):689-699. WEI Ling, WAN Qing, QIAN Ting, et al. An overview of triadic concept analysis[J]. Journal of Northwest University(Natural Science Edition), 2014, 44(5):689-699. [6] WILLE R. The basic theorem of triadic concept analysis[J]. Order, 1995, 12(2):149-158. [7] BIEDERMANN K. Triadic Galois connections[M] // General algebra and applications in discrete mathematics.Aachen: ShakerVerlag, 1997: 23-33. [8] BIEDERMANN K. An equational theory for trilattices[J]. Algebra Universalis, 1999, 42:253-268. [9] BIEDERMANN K. How triadic diagrams represent conceptual structures[M] // Conceptual Structures: Fulfilling Peirces Dream(LNCS1257). Heidelberg: Springer, 1997: 304-317. [10] GANTER B, OBIEDKOV S A. Implications in triadic formal contexts[M] // Conceptual Structures at Work(LNCS3127). Heidelberg: Springer, 2004: 186-195. [11] MISSAOUI R, KWUIDA L. Mining triadic association rules from ternary relations[M] // Formal Concept Analysis(LNCS6628). Heidelberg: Springer, 2011: 204-218. [12] DAU F, WILLE R. On the modal understanding of triadic context[M] // Classification and Information Processing at the Turn of the Millennium. Heidelberg: Springer, 2000: 83-94. [13] JASCHKE R, HOTHO A, SCHMITZ C, et al. TRIAS-an algorithm for mining iceberg trilattices[C] // Proceeding of the Sixth International Conference on Data Mining. Berlin: Springer, 2006: 907-911. [14] KAVTOUE M, KUZNETSOV S, MACKO J, et al. Minging Biclusters of similar values with triadic concept analysis[C] // Proceedings of the 7th International Conference on Concept Lattices and Their Applications. Berlin: Springer, 2011: 175-190. [15] MEHDI KAYTOUE, SERGEI O. KUZNETSOV, et al. Biclustering meets triadic concept analysis. Annals of Mathematics and Artificial Intelligence[J]. Berlin: Springer, 2014,(70):55-79. [16] BELOHLAVEK R, VYCHODIL V. Optimal factorization of three-way binary data[C] // Hu X, Lin T Y, Raghavan V, et al. 2010 IEEE International Conference on Granual Computing. Berlin: Springer, 2010: 61-66. [17] GLODEANU C. Factorization methods of binary, triadic, real and fuzzy data[J]. Studia Universitatis Babes-Bolyai Series Informatica, 2011, 56(2):81-86. [18] BELOHLAVEK R, GLODEANU C, VYCHODIL V. Optimal factorization of three-way binary data using triadic concepts[J]. Order, 2013, 30(2):437-454. [19] CYNTHIA G. Tri-ordinal factor analysis[M] // CELLIER P, DISTEL F, GANTER B. Formal Concept Analysis. Heidelberg: Springer, 2013: 125-140. [20] BELOHLAVEK R, OSICKA P. Triadic concept analysis of data with fuzzy attributes[C] // 2010 IEEE International Conference on Granular Computing. Berlin: Springer, 2010: 661-665. [21] BELOHLAVEK R, OSICKA P. Triadic concept lattices of data with graded attributes[J]. International Journal of General System, 2012, 41(2):93-108. [22] KONECNY J, OSICAKA P. Triadic concept lattices in the framework of aggregation structures [J]. Information Science, 2014, 279:512-527. [23] GLODEANU C. Fuzzy-Valued triadic implications[C] // NAPOLI A, VYCHODIL V. Proceedings of the 7th International Conference on Concept Lattices and their Applications. Berlin: Springer, 2011: 159-173. [24] BELOHLAVEK R, OSICKA P. Triadic fuzzy Galois connections as ordinary connections[J]. Fuzzy Sets and Systems, 2014, 249:83-99. [25] GROH B, WILLE R. Lattices of Triadic Concept Graphs. Lecture Notes in Computer Science[M]. Berlin: Springer, 2000: 332-341. [26] 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(8):102-106. TANG Yaqiang, FAN Min, LI Jinhai. Cognitive system model and approach to transformation of information granules under triadic formal concept analysis[J]. Journal of Shandong University(Natural Science), 2014, 49(8):102-106. [27] ROMAN Zhuk, IGNATOV Dmitry I, KONSTANTINOVA Natalia. Concept learning from triadic data[J]. Procedia Computer Science, 2014(31):928-938. [28] FEI Hao, DOO-SOON Park, GEYONG Min, et al. K-cliques mining in dynamic social networks based on triadic formal concept analysis[J]. Neurocomputing, 2016(209):57-66. [29] CH ASWANI Kumar, CHANDRA Mouliswaran S, LI Jinhai, et al. Role based access control design using Triadic concept analysis[J]. Journal of Central South University, 2016(23):3183-3191. [30] GEDIGA G, DUNTSCH I. Modal-style operators in qualitative data analysis[C] // Proceedings of the 2002 IEEE International Conference on Data Mining. Berlin: Springer, 2002: 155-162. [31] YAO Y Y. A comparative study of formal concept analysis and rough set theory in data analysis[C] // International Conference on Rough Sets and Current Trends in Computing. Berlin: Springer, 2004: 59-68. [32] YAO Y Y. Concept lattices in rough set theory[C] // Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society. Berlin: Springer, 2004: 796-801. |
[1] | 张海东1,贺艳平2. 广义区间值模糊粗糙集模型及其公理化特性[J]. J4, 2013, 48(09): 56-63. |
|