山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (7): 80-90.doi: 10.6040/j.issn.1671-9352.5.2016.034
施寒潇,厉小军,郝腾达,柳虹,朱柳青
SHI Han-xiao, LI Xiao-jun, HAO Teng-da, LIU Hong, ZHU Liu-qing
摘要: 面向微博短文本的情绪分析研究是当前的研究热点。提出了利用依存句法对微博短文本进行分析,抽取关系对,并设计相应的方法用于情感计算,其结果作为特征加入到情绪句判别模型之中;同时设计出情绪句判别规则,在分类模型之前或者之后利用规则进行预处理或者后处理,提高情绪句的判别正确率;最后使用NLP&2013中文微博数据,通过实验证明研究方法的有效性,在性能指标上相比评测最好成绩有了进一步提高。
中图分类号:
[1] PANG B, LEE L. Opinion mining and sentiment analysis: foundations and trends[J]. Information Retrieval, 2008, 2(1-2):1-135. [2] CUI H, MITTAL V, DATAR M. Comparative experiments on sentiment classification for online product reviews[C] // National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference. New York: ACM, 2006: 1265-1270. [3] LI Shoushan, HUANG Churen, ZHOU Guodong, et al. Employing personal/impersonal views in supervised and semi-supervised sentiment classification[C] // Proceedings of Annual Meeting of the Association for Computational Linguistics. Somerset: Association for Computational Linguistics, 2010: 414-423. [4] BACCIANELLA S, ESULI A, SEBASTIANI F. Multi-facet rating of product reviews[C] // Proceedings of the 31th European Conference on IR Research on Advances in Information Retrieval(ECIR'09). Berlin: Springer, 2009:461-472. [5] GYAMFI Y, WIEBE J, MIHALCEA R, et al. Integrating knowledge for subjectivity sense labeling[C] // Proceedings of Human Language Technologies: the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. New York: ACM, 2009: 10-18. [6] QUAN Changqin, REN Fuji. Construction of a blog emotion corpus for Chinese emotional expression analysis[C] // Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. New York: Association for Computational Linguistics, 2009: 1446-1454. [7] 姚源林, 王树伟, 徐睿峰,等. 面向微博文本的情绪标注语料库构建[J]. 中文信息学报, 2014, 28(5):83-91. YAO Yuanlin, WANG Shuwei, XU Ruifeng, et al. The construction of an emotion annotated corpus on micro-blog text[J]. Journal of Chinese Information Processing, 2014, 28(5):83-91. [8] PANG B, LEE L, VAITHYANATHAN S. Thumbs up?: sentiment classification using machine learning techniques[C] // Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. New York: Association for Computational Linguistics, 2002: 79-86. [9] JIN Wei, HO H H, SRIHARI R K. OpinionMiner: a novel machine learning system for web opinion mining and extraction[C] // ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 1195-1204. [10] XIA Rui, WANG Cheng, DAI Xinyu, et al. Co-training for semi-supervised sentiment classification based on dual-view bags-of-words representation[J]. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. New York: Association for Computational Linguistics, 2015: 1054-1063. [11] GO A, BHAYANI R, HUANG Lei. Twitter sentiment classification using distant supervision[R/OL]. Stanford, 2009. [2016-02-15]. http://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf. [12] BARBOSA L, FENG Junlan. Robust sentiment detection on twitter from biased and noisy data[C] // International Conference on Computational Linguistics. New York: ACM, 2010: 36-44. [13] WU Fangzhou, HUANG Yongfeng, SONG Yangqiu, et al. Towards building a high-quality microblog-specific Chinese sentiment lexicon[J]. Decision Support Systems, 2016, 87:39-49. [14] LI Weiyuan, XU Hua. Text-based emotion classification using emotion cause extraction[J]. Expert Systems with Applications, 2013, 41(3):1742-1749. [15] DO H J, CHOI H J. Korean twitter emotion classification using automatically built emotion lexicons and fine-grained features[J]. Shanghai Management Science, 2015:142-150. [16] SEO K J, NAM K C, CHOI K S. A probabilistic model of the dependency parse of the variable-word-order languages by using ascending dependency[J]. Computer Processing of Oriental Languages, 1999, 12(3):309-322. [17] 冯时, 付永陈, 阳峰,等. 基于依存句法的博文情感倾向性分析研究[J]. 计算机研究与发展, 2012, 49(11):2395-2406. FENG Shi, FU Yongchen, YANG Feng, et al. Blog sentiment orientation analysis based on dependency parsing[J]. Journal of Compute Research and Development, 2012, 49(11):2395-2406. [18] 郝雷红. 现代汉语否定副词研究[D]. 北京: 首都师范大学, 2003. HAO Leihong. A study on negative adverbs in modern Chinese[D]. Beijing: Capital Normal University, 2003. [19] 蔺璜, 郭姝慧. 程度副词的特点范围与分类[J]. 山西大学学报, 2003, 26(2):71-74. LIN Huang, GUO Shuhui. On the characteristics, range and classification of adverbs of degree[J]. Journal of Shanxi University, 2003, 26(2):71-74. [20] SHI Hanxiao, CHEN Wei, LI Xiaojun. Opinion sentence extraction and sentiment analysis for chinese microblogs[C] // Natural Language Processing and Chinese Computing. Berlin: Springer Verlag, 2013: 417-423. |
[1] | 杜漫,徐学可,杜慧,伍大勇,刘悦,程学旗. 面向情绪分类的情绪词向量学习[J]. 山东大学学报(理学版), 2017, 52(7): 52-58. |
[2] | 杨佳能, 阳爱民, 周咏梅. 基于语义分析的中文微博情感分类方法[J]. 山东大学学报(理学版), 2014, 49(11): 14-21. |
|