您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (7): 1-6.doi: 10.6040/j.issn.1671-9352.0.2018.054

• •    下一篇

丙酮酸转运体AtMPC3介导植物干旱胁迫响应机理研究

沈建霖,陈冬花*   

  1. 山东大学生命科学学院, 山东 济南 250100
  • 收稿日期:2018-01-31 出版日期:2018-07-20 发布日期:2018-07-03
  • 作者简介:沈建霖(1989— ),男,博士研究生,研究方向为植物气孔保卫细胞信号转导机制研究.E-mail: shenjl19890825@163.com*通信作者简介:陈冬花(1976— ),女,博士研究生,工程师,研究方向为植物干旱耐逆基因的筛选与保卫细胞信号转导过程研究.E-mail: donghua7103@sdu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(31500211)

Mitochondrial pyruvate carrier3 mediates abscisic acid-regulated stomatal closure and the drought response

SHEN Jian-lin, CHEN Dong-hua*   

  1. School of Life Science, Shandong University, Jinan 250100, Shandong, China
  • Received:2018-01-31 Online:2018-07-20 Published:2018-07-03

摘要: 在干旱胁迫下,植物通过自身复杂而有效的应对机制减少水分散失,其中关闭植物气孔降低蒸腾作用是一个重要环节。脱落酸(ABA)是植物响应干旱胁迫产生的可以诱导气孔关闭、减少水分散失的重要植物激素。丙酮酸是光合作用糖酵解的产物,需要借助线粒体丙酮酸转运体(MPCs)进入线粒体中进行后续物质和能量代谢。本研究发现拟南芥线粒体丙酮酸转运体AtMPC3参与介导植物干旱胁迫响应,在外源施加ABA条件下,AtMPC3基因缺失突变体的气孔较野生型开度更小,植物失水率更低,表现出更强的抗旱能力。结果说明AtMPC3在脱落酸促进植物气孔关闭及干旱应答过程中的重要作用,对于提高植物抗旱能力以及作物产量提升具有潜在应用价值及重要意义。

关键词: 气孔运动, AtMPC3, 丙酮酸, 脱落酸, 干旱胁迫

Abstract: Terrestrial plants have developed diverse mechanisms to save water especially in response to drought, and abscisic acid(ABA)is an essential phytohormone which could be induced by drought and promote stomatal closing to prohibit water loss as transpiration. Pyruvate is the product of glycolysis generated in cytosol, and could be transported by mitochondrial pyruvate carriers(MPCs)into mitochondrion for consequent cellular metabolism. The previous studies have shown that MPCs were involved in plant drought response. In the current study, we found that the functional null mutant of AtMPC3 was hypersensitive to ABA-induced stomatal closing to reduce water loss, and thus to facilitate the plant to survive the water deficiency. Our findings revealed the essential roles of AtMPC3 in ABA-promoted stomatal closing and plant drought resistance. These findings provide theoretical guidance to develop water-use-efficiency and high-yield modern agriculture.

Key words: abscisic acid, stomatal movement, AtMPC3, drought stress, pyruvate

中图分类号: 

  • Q256
[1] BANUELOS G S, FAKRA S C, WALSE S S, et al. Selenium accumulation, distribution, and speciation in spineless prickly pear cactus: a drought- and salt-tolerant, selenium-enriched nutraceutical fruit crop for biofortified foods [J]. The Plant Physiology, 2011, 155(1):315-327.
[2] HU Honghong, XIONG Lizhong. Genetic engineering and breeding of drought-resistant crops [J]. Annual Review of Plant Biology, 2014, 65(1): 715-741.
[3] COMINELLI E, GALBIATI M,VAVASSEUR A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance [J]. Current Biology, 2005, 15(13): 1196-1200.
[4] KOLLIST H, NUHKAT M, ROELFSEMA M R. Closing gaps: linking elements that control stomatal movement [J]. New Phytologist, 2014, 203(1): 44-62.
[5] NEGI J, HASHIMOTO-SUGIMOTO M, KUSUMI K, et al. New approaches to the biology of stomatal guard cells [J]. Plant Cell Physiology, 2014, 55(2):241-250.
[6] SHIMAZAKI K, DOI M, ASSMANN S M, et al. Light regulation of stomatal movement [J]. Annual Review of Plant Biology, 2007, 58(1): 219-247.
[7] SCHROEDER J L, KWAK J M, ALLEN G J. Guard cell abscisic acid signalling and engineering drought hardiness in plants [J]. Nature, 2001, 410(6826): 327-330.
[8] KIM T H, BOHMER M, HU Honghong, et al. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling [J]. Annual Review of Plant Biology, 2010, 61(1): 561-591.
[9] BAUER H, ACHE P, LAUTNER S, et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis [J]. Current Biology, 2013, 23(1): 53-57.
[10] MUNEMASA S, HAUSER F, PARK J, et al. Mechanisms of abscisic acid-mediated control of stomatal aperture [J]. Current Opinion in Plant Biology, 2015, 28(6): 154-162.
[11] SINGH R, PARIHAR P, SINGH S, et al. Reactive oxygen species signaling and stomatal movement: current updates and future perspectives [J]. Redox Biology, 2017, 11(C):213-218.
[12] KWAK J M, MORI I C, PEI Zhenming, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. The EMBO Journal, 2003, 22(11):2623-2633.
[13] ASAI N, NAKAJIMA N, TAMAOKI M, et al. Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement [J]. Plant Cell Physiology, 2000, 41(1): 10-15.
[14] KANG Yun, OUTLAW W H J R, ANDERSEN P C, et al. Guard-cell apoplastic sucrose concentration - a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L [J]. Plant Cell & Environment, 2007, 30(5): 551-558.
[15] BRICKER D K, TAYLOR E B, SCHELL J C, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans [J]. Science, 2012, 337(6090): 96-100.
[16] HERZIG S, RAEMY E, MONTESSUIT S, et al. Identification and functional expression of the mitochondrial pyruvate carrier [J]. Science, 2012, 337(6090): 93-96.
[17] SHEN Jianlin, LI Chunlong, WANG Mei, et al. Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana[J]. BMC Plant Biology, 2017, 17(1):217-228.
[18] LI Chunlong, WANG Mei, MA Xiaoyan, et al. NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis[J]. Molecular Plant, 2014, 7(10): 1508-1521.
[19] WANG Mei, MA Xiaoyan, SHEN Jianlin, et al. The ongoing story: the mitochondria pyruvate carrier 1 in plant stress response in Arabidopsis[J]. Plant Signaling & Behavior, 2014, 9(10):e973810.
[20] BENDER T, PENA G, MARTINOU J C. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes[J]. The EMBO Journal, 2015, 34(7): 911-924.
[21] TIMON-GOMEZ A, PROFT M, PASCUAL-AHUIR A. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast [J]. PloS One, 2013, 8(11):e79405.
[22] SCHELL J C, OLSON K A, JIANG Lei, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth [J]. Molecular Cell, 2014, 56(3): 400-413.
[23] LYTOVCHENKO O, KUNJI E R. Expression and putative role of mitochondrial transport proteins in cancer [J]. Biochimica Et Biophysica Acta, 2017, 1858(8): 641-654.
[24] KELLY G, MOSHELION M, DAVID-SCHWARTZ R, et al. Hexokinase mediates stomatal closure [J]. The Plant Journal, 2013, 75(6): 977-988.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!