山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (7): 1-6.doi: 10.6040/j.issn.1671-9352.0.2018.054
• • 下一篇
沈建霖,陈冬花*
SHEN Jian-lin, CHEN Dong-hua*
摘要: 在干旱胁迫下,植物通过自身复杂而有效的应对机制减少水分散失,其中关闭植物气孔降低蒸腾作用是一个重要环节。脱落酸(ABA)是植物响应干旱胁迫产生的可以诱导气孔关闭、减少水分散失的重要植物激素。丙酮酸是光合作用糖酵解的产物,需要借助线粒体丙酮酸转运体(MPCs)进入线粒体中进行后续物质和能量代谢。本研究发现拟南芥线粒体丙酮酸转运体AtMPC3参与介导植物干旱胁迫响应,在外源施加ABA条件下,AtMPC3基因缺失突变体的气孔较野生型开度更小,植物失水率更低,表现出更强的抗旱能力。结果说明AtMPC3在脱落酸促进植物气孔关闭及干旱应答过程中的重要作用,对于提高植物抗旱能力以及作物产量提升具有潜在应用价值及重要意义。
中图分类号:
[1] BANUELOS G S, FAKRA S C, WALSE S S, et al. Selenium accumulation, distribution, and speciation in spineless prickly pear cactus: a drought- and salt-tolerant, selenium-enriched nutraceutical fruit crop for biofortified foods [J]. The Plant Physiology, 2011, 155(1):315-327. [2] HU Honghong, XIONG Lizhong. Genetic engineering and breeding of drought-resistant crops [J]. Annual Review of Plant Biology, 2014, 65(1): 715-741. [3] COMINELLI E, GALBIATI M,VAVASSEUR A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance [J]. Current Biology, 2005, 15(13): 1196-1200. [4] KOLLIST H, NUHKAT M, ROELFSEMA M R. Closing gaps: linking elements that control stomatal movement [J]. New Phytologist, 2014, 203(1): 44-62. [5] NEGI J, HASHIMOTO-SUGIMOTO M, KUSUMI K, et al. New approaches to the biology of stomatal guard cells [J]. Plant Cell Physiology, 2014, 55(2):241-250. [6] SHIMAZAKI K, DOI M, ASSMANN S M, et al. Light regulation of stomatal movement [J]. Annual Review of Plant Biology, 2007, 58(1): 219-247. [7] SCHROEDER J L, KWAK J M, ALLEN G J. Guard cell abscisic acid signalling and engineering drought hardiness in plants [J]. Nature, 2001, 410(6826): 327-330. [8] KIM T H, BOHMER M, HU Honghong, et al. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling [J]. Annual Review of Plant Biology, 2010, 61(1): 561-591. [9] BAUER H, ACHE P, LAUTNER S, et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis [J]. Current Biology, 2013, 23(1): 53-57. [10] MUNEMASA S, HAUSER F, PARK J, et al. Mechanisms of abscisic acid-mediated control of stomatal aperture [J]. Current Opinion in Plant Biology, 2015, 28(6): 154-162. [11] SINGH R, PARIHAR P, SINGH S, et al. Reactive oxygen species signaling and stomatal movement: current updates and future perspectives [J]. Redox Biology, 2017, 11(C):213-218. [12] KWAK J M, MORI I C, PEI Zhenming, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. The EMBO Journal, 2003, 22(11):2623-2633. [13] ASAI N, NAKAJIMA N, TAMAOKI M, et al. Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement [J]. Plant Cell Physiology, 2000, 41(1): 10-15. [14] KANG Yun, OUTLAW W H J R, ANDERSEN P C, et al. Guard-cell apoplastic sucrose concentration - a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L [J]. Plant Cell & Environment, 2007, 30(5): 551-558. [15] BRICKER D K, TAYLOR E B, SCHELL J C, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans [J]. Science, 2012, 337(6090): 96-100. [16] HERZIG S, RAEMY E, MONTESSUIT S, et al. Identification and functional expression of the mitochondrial pyruvate carrier [J]. Science, 2012, 337(6090): 93-96. [17] SHEN Jianlin, LI Chunlong, WANG Mei, et al. Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana[J]. BMC Plant Biology, 2017, 17(1):217-228. [18] LI Chunlong, WANG Mei, MA Xiaoyan, et al. NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis[J]. Molecular Plant, 2014, 7(10): 1508-1521. [19] WANG Mei, MA Xiaoyan, SHEN Jianlin, et al. The ongoing story: the mitochondria pyruvate carrier 1 in plant stress response in Arabidopsis[J]. Plant Signaling & Behavior, 2014, 9(10):e973810. [20] BENDER T, PENA G, MARTINOU J C. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes[J]. The EMBO Journal, 2015, 34(7): 911-924. [21] TIMON-GOMEZ A, PROFT M, PASCUAL-AHUIR A. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast [J]. PloS One, 2013, 8(11):e79405. [22] SCHELL J C, OLSON K A, JIANG Lei, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth [J]. Molecular Cell, 2014, 56(3): 400-413. [23] LYTOVCHENKO O, KUNJI E R. Expression and putative role of mitochondrial transport proteins in cancer [J]. Biochimica Et Biophysica Acta, 2017, 1858(8): 641-654. [24] KELLY G, MOSHELION M, DAVID-SCHWARTZ R, et al. Hexokinase mediates stomatal closure [J]. The Plant Journal, 2013, 75(6): 977-988. |
No related articles found! |
|