《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 89-94.doi: 10.6040/j.issn.1671-9352.0.2018.145
• • 上一篇
冯瑶瑶,姚海楼*
FENG Yao-yao, YAO Hai-lou*
摘要: 在阿贝尔范畴中引入了有限表现维数的概念,并讨论了短正合列中对象间有限表现维数的关系。进一步地,令Rab(A,B,C )为阿贝尔范畴粘合,证明了在一定条件下,阿贝尔范畴B的有限表现维数有限当且仅当阿贝尔范畴A与C 的有限表现维数有限。
中图分类号:
[1] BEILINSON A A, BERSTEIN J, DELIGNE P. Faisceaux pervers[M] // Astérisque 100, Soc Math. Paris:[s.n.] , 1982. [2] MACPHERSON R, VILONEN K. Elementary construction of perverse sheaves[J]. Invent Math, 1986, 84:403-485. [3] HAPPEL D. Introduction techniques for homological conjectures[J]. Tsukuba J Math, 1993, 17: 115-130. [4] WIEDEMANN A. On stratifcations of derived module categories[J]. Canadian Math Bull, 1991, 34: 275-280. [5] PSAROUDAKIS C. Homological theory of recollements of abelian categories[J]. J Algebra. 2014, 398: 63-110. [6] NG H K. Finitely presented dimension of commutative rings and module[J]. Pacific J Maths, 1984, 113(2): 417-431. [7] MITCHELL B. Theory of categories[M]. New York: Academic Press, 1976. [8] POPESCU N. Abelian categories with applications to rings and modules[J]. Journal of Heat Transfer, 1973, 121(2): 253-260. [9] 章璞.三角范畴与导出范畴[M]. 北京:科学出版社, 2015. ZHANG Pu, Triangulated categories and derived categories[M]. Beijing: Science Press, 2015. |
[1] | 朱焱,侯建锋,王纪辉 . 图的粘合运算与韧度和孤立韧度的关系[J]. J4, 2006, 41(5): 59-62 . |
|