《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 30-33.doi: 10.6040/j.issn.1671-9352.0.2018.196
• • 上一篇
白瑞蒲1,2,吴婴丽1,2,侯帅1,2
BAI Rui-pu1,2, WU Ying-li1,2, HOU Shuai1,2
摘要: 利用对合导子及伴随表示的对偶模构造了对偶3-李代数,证明了特征为0的代数闭域上任意4-维3-李代数存在对合导子,并利用4-维3-李代数的对合导子构造了7种不同构的8-维 3-李代数的Manin Triple。
中图分类号:
[1] FILIPPOV V T. n-Lie algebras[J]. Siberian Mathematical Journal, 1985, 26(6):879-891. doi:10.1007/bf00969110. [2] BAI Ruipu, BAI Chengming, WANG Jinxiu. Realizations of 3-Lie algebras[J]. Journal of Mathematical Physics, 2010, 51(6):063505. doi:10.1063/1.3436555. [3] BAI Ruipu. LI Zhenheng,WANG Weidong. Infinite-dimensional 3-Lie algebras and their connections to Harish-Chandra modules[J]. Frontiers of Mathematics in China, 2017, 12(3):515-530. doi:10.1007/s11464-017-0606-7. [4] BAI Chengming, GUO Li, SHENG Yunhe. Bialgebras, the classical Yang-Baxter equation and main triples for 3-Lie algebras[J/OL]. arXiv:1604.05996v1[math-ph]. [5] BAI Ruipu, SONG Guojie, ZHANG Yaozhong. On classification of n-Lie algebras[J]. Frontiers of Mathematics in China, 2011, 6(4):581-606. |
[1] | 李强,马丽丽,王晓燕,吕莉娇. Hom-Jordan李代数的交换扩张[J]. 《山东大学学报(理学版)》, 2018, 53(12): 4-8. |
[2] | 巩本学,李莎莎 . O(Spq(4))经由Uq(sp(4))的Jantzen途径实现[J]. J4, 2007, 42(8): 91-94 . |
|