您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (1): 26-35.doi: 10.6040/j.issn.1671-9352.0.2018.387

• 高端论坛 • 上一篇    下一篇

基于Gash修正模型的元宝槭林分结构对降雨分配的影响

李亦然(),张荣华,李泽东,牛勇*(),张永涛*()   

  1. 山东农业大学林学院, 山东省土壤侵蚀与生态修复重点实验室, 泰山森林生态系统定位研究站, 山东 泰安 271018
  • 收稿日期:2018-07-09 出版日期:2019-01-20 发布日期:2019-01-23
  • 通讯作者: 牛勇,张永涛 E-mail:19754328@qq.com;150401973@qq.com;yongtaozhang@126.com
  • 作者简介:李亦然(1993—),男,硕士研究生,研究方向为水土保持监测与生态水文研究. E-mail:19754328@qq.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2016DB12);泰安市科技发展计划资助项目(20113052)

Influence of stand structure of Acer truncatum forest on rainfall redistribution based on modified Gash model

Yi-ran LI(),Rong-hua ZHANG,Ze-dong LI,Yong NIU*(),Yong-tao ZHANG*()   

  1. Forestry College of Shandong Agricultural University, Shandong Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Taishan Forest Eco-station of State Forestry Administration, Tai'an 271018, Shandong, China
  • Received:2018-07-09 Online:2019-01-20 Published:2019-01-23
  • Contact: Yong NIU,Yong-tao ZHANG E-mail:19754328@qq.com;150401973@qq.com;yongtaozhang@126.com
  • Supported by:
    山东省自然科学基金资助项目(ZR2016DB12);泰安市科技发展计划资助项目(20113052)

摘要:

林冠截留是森林生态系统降雨分配的起始点,准确模拟林冠截留是探究森林水文过程的基础。为了研究林分结构中林分密度对林冠截留的影响规律及Gash修正模型的适应性,以北京市八达岭森林公园2种林分密度的元宝槭纯林为研究对象,对其林冠截留过程进行了模拟分析,并针对元宝槭林分结构特征探讨了Gash修正模型的适应性。研究结果表明:(1)2013年生长季内,元宝槭密林(3 665株/km2)穿透降雨量、树干茎流量和林冠截留量实测值分别为365.50、38.19、69.82 mm,模拟值分别为386.45、33.86、53.21 mm,相对误差分别为5.73%、4.33%和23.80%;元宝槭疏林(1 090株/km2)的穿透降雨量、树干茎流量和林冠截留量实测值分别为380.20、19.04、74.25 mm,模拟值分别为368.37、13.71、91.43 mm,相对误差分别为3.12%、27.99%和23.13%。疏林条件下,更多的降雨穿透林冠,进入了森林生态系统的下一水文效应层, Gash修正模型的模拟结果亦呈现基本一致的特征,模型对元宝槭林的模拟精度基本可以满足需要。(2)对Gash修正模型中的平均降雨强度(${\bar R}$)、树干茎流系数(Pt)、饱和林冠持水能力(S)、郁闭度(c)、饱和树干持水能力(St)、平均饱和林冠蒸发速率(${\bar E}$)共6个关键参数的进行敏感性分析,各参数对元宝槭密林林冠截留量模拟的影响程度大小依次为${\bar R}$ > S > ${\bar E}$ > St > c > Pt,对于元宝槭疏林的影响程度大小依次为S > ${\bar R}$ > ${\bar E}$ > c > St > Pt。通过分析可以得出,选择适宜的时间尺度计算平均降雨强度和饱和林冠持水能力,是提升Gash修正模型模拟精度的关键,适当疏伐可以为林分的生长提供更好的水分条件。

关键词: Gash修正模型, 林冠截留, 林分密度, 元宝槭, 敏感性分析

Abstract:

Canopy interception is the starting point of rainfall distribution in forest ecosystem, and accurate simulation of canopy interception is the basis of exploring forest hydrological process. In order to study the influence of stand density on canopy interception and the adaptability of Gash modified model in stand structure, the Acer truncatum forests with two kinds of forest density in Badaling Forest Park of Beijing were taken as the research object. The simulation analysis of the canopy interception process was carried out, and the adaptability of the Gash correction model was discussed for the stand structural characteristics of the A. truncatum forest. The results showed that: (1) In the growing season of 2013, the measured values of the throughfall, stem flow and canopy interception of A. truncatum forest with the density of 3 665 strain/km2 were 365.5 mm, 38.19 mm and 69.82 mm, and the simulated values by the modified Gash model were 386.45 mm, 33.86 mm and 53.21 mm. Compared with the measured values, the relative errors were 5.73%, 4.33% and 23.80% respectively. The throughfall, stem flow and canopy interception of A. truncatum forest with the density of 1 090 strain/km2 were 380.2 mm, 19.04 mm and 74.25 mm, and the simulated values by the modified Gash model were 368.37 mm, 13.71 mm and 91.43 mm. And the relative errors were 3.12%, 27.99% and 23.13% compared with the measured values. Under the sparse forest conditions, more rainfall penetrated the canopy and entered the next hydrological effect layer of the forest ecosystem. The simulation results of the Gash modified model also showed basically consistent characteristics. The simulation accuracy of the model to the A. truncatum forest can basically meet the needs. (2) Sensitivity analysis of six key parameters in the Gash modified model was carried out, such as the average rainfall intensity (${\bar R}$), the drainage partitioning coefficient (Pt), the canopy storage capacity (S), the canopy cover fraction per unit area (c), the trunks storage capacity (St), the average saturated canopy evaporation rate(${\bar E}$). The influence of the six parameters on the A. truncatum forest with high density was R > S > E > St > c > Pt. And it was S > R > E > C > St > Pt on the A. truncatum forest with low density. It can be concluded from the analysis that it is the key to improve the simulation accuracy of the modified Gash model by selecting the appropriate time scale to calculate the average rainfall intensity and the canopy storage capacity. Proper thinning can provide better water conditions for stand growth.

Key words: modified Gash model, canopy interception, forest density, Acer truncatum, sensitivity analysis

中图分类号: 

  • S715.2

图1

研究期内各降雨特征频率分布"

图2

不同密度元宝槭林降雨量与穿透降雨的关系"

图3

不同密度元宝槭林降雨量与树干茎流的关系"

表1

不同密度元宝槭林实测值与Gash修正模型模拟值"

模型组成部分 元宝槭密林(3 660株/hm2) 元宝槭疏林(1 090株/hm2)
实测值/mm 模拟值/mm 实测值/mm 模拟值/mm
m次林冠未达到饱和状态时的降雨量/mm / 2.40 / 4.84
n次林冠达到饱和状态的林冠加湿过程/mm / 0.67 / 2.22
降雨终止前饱和状态林冠的蒸发散/mm / 20.49 / 17.26
降雨停止后的林冠蒸发散/mm / 21.17 / 66.95
q次树干达到饱和时的蒸发散/mm / 8.06 / 0.16
n-q次树干未达到饱和状态时的降雨量/mm / 0.42 / 0.00
林冠截留量/mm 69.8 53.21 74.3 91.43
树干茎流量/mm 38.2 33.86 19.0 13.71
穿透雨量/mm 365.5 386.45 380.2 368.37

图4

元宝槭密林(左)和元宝槭疏林(右) Gash修正模型参数敏感性分析"

1 魏曦, 毕华兴, 梁文俊. 基于Gash模型对华北落叶松和油松人工林冠层截留的模拟[J]. 中国水土保持科学, 2017, 15 (6): 27- 33.
WEI Xi , BI Huaxing , LIANG Wenjun . Canopy interception simulation of Larix principis-rupprechtii and Pinus tabulaeformis forests in northern China based on Gash model[J]. Science of Soil and Water Conservation, 2017, 15 (6): 27- 33.
2 高婵婵, 彭焕华, 赵传燕, 等. 基于Gash模型的青海云杉林降水截留模拟[J]. 生态学杂志, 2015, 34 (1): 288- 294.
GAO Chanchan , PENG Huanhua , ZHAO Chuanyan , et al. Simulation of rainfall interception of Qinghai spruce (Picea crassifolia) forest in the eastern part of Qilian Mountains by Gash model[J]. Chinese Journal of Ecology, 2015, 34 (1): 288- 294.
3 赵海蓉, 帅伟, 李静, 等. 华西雨屏区几种典型人工林降雨截留分配特征[J]. 水土保持学报, 2014, 28 (6): 94- 100.
ZHAO Hairong , SHUAI Wei , LI Jing , et al. Distribution characteristics of several typical plantation intercept rainfall in West China rain screen area[J]. Journal of Soil and Water Conservation, 2014, 28 (6): 94- 100.
4 何常清, 薛建辉, 吴永波, 等. 应用修正的Gash解析模型对岷江上游亚高山川滇高山栎林林冠截留的模拟[J]. 生态学报, 2010, 30 (5): 1125- 1132.
HE Changqing , XUE Jianhui , WU Yongbo , et al. Application of a revised Gash analytical model to simulate subalpine Quercus aquifolioides forest canopy interception in the upper reaches of Minjiang River[J]. Acta Ecologica Sinica, 2010, 30 (5): 1125- 1132.
5 MUZYLO A , LLORENS P , VALENTE F , et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370 (1): 191- 206.
6 GASH J H C . An analytical model of rainfall interception in forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 105 (443): 43- 55.
doi: 10.1002/(ISSN)1477-870X
7 GASH J H C , LLOYD C R , LACHAUD G . Estimation sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170 (1): 78- 86.
8 LIMOUSIN J M , RAMBAL S , OURCIVAL J M , et al. Modelling rainfall interception in a mediterranean Quercus ilex, ecosystem: lesson from a throughfall exclusion experiment[J]. Journal of Hydrology, 2008, 357 (1/2): 57- 66.
9 曹光秀, 赵洋毅, 段旭, 等. 基于修正的Gash模型模拟中亚热带常绿阔叶林降雨截留过程[J]. 水土保持学报, 2018, 32 (2): 364- 371.
CAO Guangxiu , ZHAO Yangyi , DUAN Xu , et al. Simulation of canopy rainfall interception of the Evergreen Broad-leaver forest in mid subtropical zone using the modified Gash model[J]. Journal of Soil and Water Conservation, 2018, 32 (2): 364- 371.
10 刘胜涛, 高鹏, 李肖, 等. 江西大岗山杉木人工林降雨截留特征及修正Gash模型的模拟[J]. 水土保持学报, 2015, 29 (2): 172- 176.
LIU Shengtao , GAO Peng , LI Xiao , et al. Canopy rainfall interception characteristics of Chinese Fir forest and its revised Gash model simulation in Dagangshan Mountain of Jiangxi province[J]. Journal of Soil and Water Conservation, 2015, 29 (2): 172- 176.
11 柴汝杉, 蔡体久, 满秀玲, 等. 基于修正的Gash模型模拟小兴安岭原始红松林降雨截留过程[J]. 生态学报, 2013, 33 (4): 1276- 1284.
CHAI Rushan , CAI Tijiu , MAN Xiuling , et al. Simulation of rainfall interception process of primary korean pine forest in Xiaoxing'an Mountains by using the modified Gash model[J]. Acta Ecologica Sinica, 2013, 33 (4): 1276- 1284.
12 王艳萍, 王力, 卫三平. Gash模型在黄土区人工刺槐林冠降雨截留研究中的应用[J]. 生态学报, 2012, 32 (17): 5445- 5453.
WANG Yanping , WANG Li , WEI Sanping . Modeling canopy rainfall interception of a replanted Robinia pseudoacacia forest in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32 (17): 5445- 5453.
13 赵洋毅, 王玉杰, 王云琦, 等. 基于修正的Gash模型模拟缙云山毛竹林降雨截留[J]. 林业科学, 2011, 47 (9): 15- 20.
ZHAO Yangyi , WANG Yujie , WANG Yunqi , et al. Simulation of canopy rainfall interception of the Phyllostachys edulis forest with the revised Gash model in the Jinyun Mountains of Chongqing[J]. Scientia Silvae Sinicae, 2011, 47 (9): 15- 20.
14 SHINOHARA Y , LEVIA D F , KOMATSU H , et al. Comparative modeling of the effects of intensive thinning on canopy interception loss in a Japanese cedar (Cryptomeria japonica, D. Don) forest of western Japan[J]. Agricultural & Forest Meteorology, 2015, 214/215: 148- 156.
15 GHIMIRE C P , BRUIJNZEEL L A , LUBCZYNSKI M W , et al. Measurement and modelling of rainfall interception by two differently aged secondary forests in upland Eastern Madagascar[J]. Journal of Hydrology, 2017, 545: 212- 225.
doi: 10.1016/j.jhydrol.2016.10.032
16 FATHIZADEH O , HOSSEINI S M , KEIM R F , et al. A seasonal evaluation of the reformulated Gash interception model for semi-arid deciduous oak forest stands[J]. Forest Ecology & Management, 2018, 409: 601- 613.
17 CARLE-MOSESA D E , PRICEB A G . An evaluation of the Gash interception model in a northern hardwood stand[J]. Journal of Hydrology, 1999, 214 (1/2/3/4): 103- 110.
18 万艳芳, 刘贤德, 王顺利, 等. 祁连山青海云杉林冠降雨再分配特征及影响因素[J]. 水土保持学报, 2016, 30 (5): 224- 229.
WAN Yanfang , LIU Xiande , WANG Shunli , et al. Rainfall canopy partitioning and its influencing factors of Picea crassifolia forest in the Qianlian Mountains[J]. Journal of Soil and Water Conservation, 2016, 30 (5): 224- 229.
19 隋媛媛, 许晓鸿, 张瑜, 等. 东北黑土区水土保持林降雨截留特征分析[J]. 草业学报, 2015, 24 (6): 16- 24.
SUI Yuanyuan , XU Xiaohong , ZHANG Yu , et al. Characteristics of precipitation interception in soil and water conservation forests of the Northeast black soil areas of China[J]. Acta Prataculturae Sinica, 2015, 24 (6): 16- 24.
20 盛后财, 蔡体久, 李奕, 等. 大兴安岭北部兴安落叶松林降雨截留再分配特征[J]. 水土保持学报, 2014, 28 (6): 101- 105.
SHENG Houcai , CAI Tijiu , LI Yi , et al. Rainfall redistribution in Larix gmelinii forest on Northern of Daxing'an Moutains, northeast of China[J]. Journal of Soil and Water Conservation, 2014, 28 (6): 101- 105.
21 LIU S . Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North Central Florida[J]. Journal of Hydrology, 1998, 207 (1/2): 32- 41.
22 芦新建, 贺康宁, 王辉, 等. 应用Gash模型对青海高寒区华北落叶松人工林林冠截留的模拟[J]. 水土保持学报, 2014, 28 (4): 44- 48.
LU Xinjian , HE Kangning , WANG Hui , et al. Simulation of canopy rainfall interception of the Larix principis-rupprechtii artificial forest with the Gash model in High-cold areas of Qinghai province[J]. Journal of Soil and Water Conservation, 2014, 28 (4): 44- 48.
23 田野宏, 满秀玲, 刘茜, 等. 大兴安岭北部白桦次生林降雨再分配特征研究[J]. 水土保持学报, 2014, 28 (3): 109- 113.
TIAN Yehong , MAN Xiuling , LIU Qian , et al. Research on rainfall redistribution of Betula platyphylla secondary forests in north of greater Xing'an Mountains[J]. Journal of Soil and Water Conservation, 2014, 28 (3): 109- 113.
24 时忠杰, 王彦辉, 徐丽宏, 等. 六盘山华山松(Pinus armandii)林降雨再分配及其空间变异特征[J]. 生态学报, 2009, 29 (1): 76- 85.
doi: 10.3321/j.issn:1000-0933.2009.01.010
SHI Zhongjie , WANG Yanhui , XU Lihong , et al. Rainfall redistribution and its spatial variation in the stand of Pinus armandii in the Liupan Mountains, China[J]. Acta Ecologica Sinica, 2009, 29 (1): 76- 85.
doi: 10.3321/j.issn:1000-0933.2009.01.010
25 曾伟, 熊彩云, 肖复明, 等. 不同密度退耕雷竹春季林冠截留特性[J]. 生态学杂志, 2014, 33 (5): 1178- 1182.
ZENG Wei , XIONG Caiyun , XIAO Fuming , et al. Spring canopy interception characteristics of Phyllostachys praecox cv. Prevernalis stand converted from cropland at different densities[J]. Chinese Journal of Ecology, 2014, 33 (5): 1178- 1182.
26 张晓蓓.宁夏六盘山南侧华北落叶松人工林生态水文影响的密度效应评价[D].保定:河北农业大学, 2012.
ZHANG Xiaopei. Ecohydrological impact assessment among Larix principis-rupprechii plantation with different densities at south part of Liupan Mountains in Ningxia[D]. Baoding: Agricultural University of Hebei, 2012.
27 刘效东, 龙凤玲, 陈修治, 等. 基于修正的Gash模型对南亚热带季风常绿阔叶林林冠截留的模拟[J]. 生态学杂志, 2016, 35 (11): 3118- 3125.
LIU Xiaodong , LONG Fengling , CHEN Xiuzhi , et al. An assessment of the revised Gash interception model in a monsoon evergreen broadleaved forest in lower subtropical China[J]. Chinese Journal of Ecology, 2016, 35 (11): 3118- 3125.
28 刘玉杰, 满秀玲. 修正Gash模型在兴安落叶松天然林林冠截留中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40 (4): 81- 88.
LIU Yujie , MAN Xiuling . Simulation of canopy rainfall interception of the Larix gmelinii forest by the modified Gash model in Greater Hinggan Mountains[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40 (4): 81- 88.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[2] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[3] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[4] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[5] 任敏1,2,张光辉1. 右半直线上依分布收敛独立随机环境中随机游动的吸收概率[J]. J4, 2013, 48(1): 93 -99 .
[6] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[7] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[8] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[9] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27 -30 .
[10] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .