《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 25-29.doi: 10.6040/j.issn.1671-9352.0.2018.452
• • 上一篇
乔虎生,冯乐婷*
QIAO Hu-sheng, FENG Le-ting*
摘要: 设S是序幺半群,将逆S-系进行了推广,研究了序逆S-系的性质和同调分类问题。
中图分类号:
[1] HACH T L. Characterization of monoids by regular acts[J]. Semigroup Forum, 1985, 16:273-279. [2] KILP M, KNAUER U. Characterization of monoids by properties of regular acts[J]. Journal of Pure and Applied Algebra, 1987, 46:217-231. [3] KNAUER U, MIKHALEV A V. Wreath products of acts over monoids: regular and inverse acts[J]. Journal of Pure and Applied Algebra, 1988, 51:251-260. [4] WANG Ning, LIU Zhongkui. Monoids over which all strongly flat left acts are regular[J]. Communications in Algebra, 1996, 26:1863-1866. [5] LIU Zhongkui. Monoids over which all flat left acts are regular[J]. Journal of Pure and Applied Algebra, 1996, 111:199-203. [6] 乔虎生, 白永发. 逆S-系对幺半群的刻画[J]. 山东大学学报(理学版), 2017, 52(2):1-4,8. QIAO Husheng, BAI Yongfa. Characterization of monoids by inverse S-acts[J]. Journal of Shandong University(Natural Science), 2017, 52(2):1-4,8. [7] SHI Xiaoping, LIU Zhongkui, WANG Fanggui, et al. Indecomposable, projective, and flat S-posets[J]. Communications in Algebra, 2005, 33:235-251. [8] AHSAN J, LIU Zhongkui. A homological approach to the theory of monoids[M]. Beijing: Science Press, 2008. [9] KILP M, KNAUER U, MIKHALEV A V. Monoids acts and categories[M]. Berlin: Walter de Gruyter, 2000. [10] 刘仲奎, 乔虎生. 半群的S-系理论[M]. 北京: 科学出版社, 2008. LIU Zhongkui, QIAO Husheng. Theory of S-acts of semigroups[M]. Beijing: Science Press, 2008. |
[1] | 乔虎生,陈倩. 强忠实S-系对幺半群的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(6): 21-24. |
[2] | 乔虎生,白永发. 逆S-系对幺半群的刻画[J]. 山东大学学报(理学版), 2017, 52(2): 1-4. |
[3] | 乔虎生, 文海存. 关于序主弱平坦S-系的一个推广[J]. 山东大学学报(理学版), 2015, 50(12): 109-113. |
|