您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (7): 89-99.doi: 10.6040/j.issn.1671-9352.0.2018.588

• • 上一篇    

一类具有随机效应的SIRI传染病模型的定性分析

高建忠,张太雷*   

  1. 长安大学理学院, 陕西 西安 710064
  • 发布日期:2019-06-27
  • 作者简介:高建忠(1991— ), 男, 硕士研究生, 研究方向为常微分方程及其应用. E-mail: gaojianzhong2017@126.com*通信作者简介:张太雷(1980— ), 男, 博士,教授, 研究方向为常微分方程及其应用. E-mail: t.l.zhang@126.com
  • 基金资助:
    国家自然科学基金资助项目(11701041);陕西省自然科学基础研究计划项目(2018JM1011;2017JQ1014)

Qualitative analysis of an SIRI epidemic model with stochastic effects

GAO Jian-zhong, ZHANG Tai-lei*   

  1. School of Science, Changan University, Xian 710064, Shaanxi, China
  • Published:2019-06-27

摘要: 研究了具有随机效应的SIRI双线性传染病模型。利用停时理论及Lyapunov分析方法, 证明了随机模型正解的全局存在唯一性和有界性, 讨论了随机模型的解在相应确定性模型的无病平衡点和地方病平衡点附近的振荡行为, 得到了随机模型的解的平均持续和疾病灭绝的充分条件。最后, 数值模拟验证了理论结果的正确性。

关键词: 随机SIRI模型, 振荡行为, 平均持续, 疾病灭绝

Abstract: An SIRI bilinear epidemic model with stochastic effects is studied. The global existence, uniqueness and boundedness of its positive solution are proved by using stopping time theory and Lyapunov analysis method. It is also shown that the solution of the stochastic model oscillates around the corresponding deterministic disease-free equilibrium and endemic equilibrium points, and the sufficient conditions for persistence in mean of the solution of the stochastic model and disease extinction are obtained. Finally, numerical simulations are carried out to prove the validity of theoretical results.

Key words: stochastic SIRI model, oscillating behavior, persistence in mean, disease extinction

中图分类号: 

  • O175.1
[1] TUDOR D. A deterministic model for herpes infections in human and animal populations[J]. Siam Review, 1990, 32(1): 136-139.
[2] GUO Peng, YANG Zhichun. The stability of SIRI model with nonliner incidence rate[J]. Journal of Chongqing Normal University: Natural Science, 2011, 28(4): 35-39.
[3] BLOWER S. Modelling the genital herpes epidemic[J]. Herpes, 2004, 11(3): 138-146.
[4] BELOTTO A, LEANES L F, SCHNEIDER M C, et al. Overview of rabies in the Americas[J]. Virus Research, 2005, 111(1): 1-12.
[5] NAZ R, MAHOMED K S, NAEEM I. First integrals and exact solutions of the SIRI and tuberculosis models[J]. Mathematical Methods in the Applied Sciences, 2016, 39(15): 4654-4666.
[6] 雷桥, 杨志春. 具有随机效应的SIRI传染病模型的定性分析[J]. 重庆师范大学学报(自然科学版), 2016, 33(1): 82-85.LEI Qiao, YANG Zhichun. The qualitative analysis of SIRI epidemic model with stochastic effects[J]. Journal of Chongqing Normal University(Natural Science), 2016, 33(1): 82-85.
[7] CAI Yongli, KANG Yun, WANG Weiming. A stochastic SIRS epidemic model with nonlinear incidence rate[J]. Applied Mathematics and Computation, 2017, 305: 221-240.
[8] ZHAO Yanan, JIANG Daqing. The threshold of a stochastic SIRS epidemic model with saturated incidence[J]. Applied Mathematics Letters, 2014, 34(1): 90-93.
[9] LIU Qun, JIANG Daqing, SHI Ningzhong, et al. The threshold of a stochastic SIS epidemic model with imperfect vaccination[J]. Mathematics and Computers in Simulation, 2017, 144: 78-90.
[10] YANG Qingshan, JIANG Daqing, SHI Ningzhong, et al. The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence[J]. Journal of Mathematical Analysis and Applications, 2012, 388(1): 248-271.
[11] 刘杰, 胡志兴, 廖福成. 随机模型SIRS的定性分析[J]. 宁夏大学学报(自然科学版), 2016, 37(1): 1-6. LIU Jie, HU Zhixing, LIAO Fucheng. Qualitative analysis of stochastic SIRS model[J]. Journal of Ningxia University(Natural Science Edition), 2016, 37(1): 1-6.
[12] 张艳宏, 许超群, 原三领. 一类接触率受到噪声干扰的随机SIS流行病模型研究[J]. 上海理工大学学报, 2015, 37(6): 512-516. ZHANG Yanhong, XU Chaoqun, YUAN Sanling. Stochastic SIS epidemic model with contract rate influenced by noise[J]. Journal of University of Shanghai for Science and Technology, 2015, 37(6): 512-516.
[13] LIU Qun, JIANG Daqing, HAYAT T, et al. Stationary distribution and extinction of a stochastic SIRI epidemic model with relapse[J]. Stochastic Analysis and Applications, 2018, 36(1): 138-151.
[14] JI Chunyan, JIANG Daqing, SHI Ningzhong. The behavior of an SIR epidemic model with stochastic perturbation[J]. Stochastic Analysis and Applications, 2014, 30(5): 755-773.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20.
[3] 杨丹丹. 带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理[J]. 山东大学学报(理学版), 2018, 53(2): 46-51.
[4] 万树园,王智勇. 一类具有p-Laplace算子的Hamilton系统周期解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 42-46.
[5] 史学伟,贾建文. 一类具有信息变量和等级治愈率的SIR传染病模型的研究[J]. 山东大学学报(理学版), 2016, 51(3): 51-59.
[6] 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54.
[7] 范进军, 路晓东. 时标上带强迫项的二阶中立型时滞动力方程非振动解的存在性[J]. 山东大学学报(理学版), 2015, 50(05): 45-50.
[8] 陈雯, 姚静荪, 杨雪洁. 一个奇摄动四阶微分方程的非线性混合边值问题[J]. 山东大学学报(理学版), 2015, 50(03): 67-72.
[9] 张志戎. 一类多项式系统极限环惟一性与奇点分支[J]. J4, 2009, 44(9): 90-92.
[10] . 无穷区间上具有pLaplacian算子的SturmLiouville型边值问题的迭代正解[J]. J4, 2009, 44(5): 86-90.
[11] 张兴秋,仲秋艳 . Banach空间奇异m点边值问题的正解[J]. J4, 2008, 43(9): 51-56 .
[12] 崔玉军,邹玉梅 . 拓扑度的计算及其对Banach空间中二阶三点边值问题的应用[J]. J4, 2008, 43(3): 84-86 .
[13] 李宗成, . 一类余维2的高次退化平面多项式系统的极限环分布[J]. J4, 2007, 42(2): 19-27 .
[14] 田家财,高 丽 . 一类二阶微分方程多重解的存在性[J]. J4, 2007, 42(6): 55-60 .
[15] 刘新民,崔玉军* . Banach空间非柱形域上微分系统解的存在性[J]. J4, 2008, 43(4): 1-05 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!