山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 46-51.doi: 10.6040/j.issn.1671-9352.0.2017.222
杨丹丹
YANG Dan-dan
摘要: 利用多值映射的不动点定理, 给出了以下带有非局部积分边值Hadamard型分数阶微分包含解的终结点型存在性定理:{Dαx(t)∈F(t,x(t)), 1
中图分类号:
[1] AGARWAL R P, BALEANU D, HEDAYATI V, et al. Two fractional derivative inclusion problems via integral boundary condition[J]. Applied Mathematics and Computation, 2015, 257(2):205-212. [2] AHMAD B, AGARWAL R P, ALlSAEDI A. Fractional differential equations and inclusions with semiperiodic and three-point boundary conditions[J]. Boundary Value Problems, 2016, 2016(1):1-20. [3] WANG Jinrong, IBRAHIM A G, FECKAN M. Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces[J]. Applied Mathematics and Computation, 2015, 257(1):103-118. [4] YANG Dandan. Existence of solutions for fractional differential inclusions with boundary conditions[J]. Electronic Journal of Differential Equations, 2010, 2010(92):1-10. [5] 杨丹丹. 带有积分边值条件的分数阶微分包含解的存在性[J].浙江大学学报(理学版),2015,42(6):688-692. YANG Dandan. Existence of solutions for fractional differential inclusions with integral boundary conditions[J]. Journal of Zhejiang university(Natural Science), 2015, 42(6):688-692. [6] HADAMARD J. Essai sur lerude des fonctions donnees par leur developmenr de Taylor[J]. Journal De Mathematiques Pures Et Appliquees, 1892, 8(1):101-186. [7] AGARWAL R P, NTOUYAS S K, AHMAD B, et al. Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments[J]. Advances in Difference Equations, 2016, 2016(1):1-15. [8] AHMAD B, NTOUYAS S K, TARIBOON J. A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory[J]. Applied Mathematics Letters, 2016, 52(1):9-14. [9] KILBAS A A. Hadamard-type fractional calculus[J]. Journal of Korean Mathematical Society, 2001, 38(6):1191-1204. [10] NTOUYAS S K, TARIBOON J. Fractinal integral problems for Hadamard-Caputo fractional Langevin differential inclusions[J]. Applied Mathematics and Computation, 2016, 51(1):13-33. [11] NTOUYAS S K, ETEMAD S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation, 2015, 266(3):235-243. [12] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland: Elsevier Science Ltd, 2006. [13] PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999. [14] SAMKO S G, KILBAS A A, MARICHEV O I. Fractional integral and derivatives: theory and applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993. [15] DEIMLING K. Multi-valued differential equations[M]. Berlin: Walter de Gruyter, 1992. [16] AMINI-HARANDI A. Endpoints of set-valued contractions in metric space[J]. Nonlinear Analysis, 2010, 72(1):132-134. [17] ALlSAEDI A, NTOUYAS S K, AHMAD B, et al. Nonlinear Hadamard fractional differential equations with Hadamard type nonlocal non-conserved conditions[J]. Advances in Difference Equations, 2015, 2015(1):1-13. |
[1] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[2] | 高洁. 多点边值问题的特征值结构[J]. J4, 2011, 46(8): 17-22. |
|