您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 52-64.doi: 10.6040/j.issn.1671-9352.0.2017.403

• • 上一篇    下一篇

剩余格上的落影模糊滤子

彭家寅   

  1. 内江师范学院数学与信息科学学院, 四川 内江 641199
  • 收稿日期:2017-08-15 出版日期:2018-02-20 发布日期:2018-01-31
  • 作者简介:彭家寅(1962— ),男,博士,教授,研究方向为模糊数学与人工智能. E-mail:pengjiayin62226@163.con
  • 基金资助:
    教育部数学与应用数学专业综合改革项目(ZG0464);四川省科技厅重点科技项目(2006J13-035);四川省数学与成用数学专业综合改革项目(01249);国家自然科学基金资助项目(11071178);内江师范学院应用数学重点学科项目;四川省数学与应用数学专业卓越教师培养计划项目;内江师范学院卓越教师培养计划项目

Falling fuzzy filters on residuated lattices

PENG Jia-yin   

  1. School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641199, Sichuan, China
  • Received:2017-08-15 Online:2018-02-20 Published:2018-01-31

摘要: 利用落影理论重新建立剩余格的模糊滤子理论。 提出了剩余格的落影模糊滤子、落影模糊蕴涵滤子、落影模糊正蕴涵滤子、落影模糊Boolean、落影模糊G-滤子的概念,研究它们的相关性质。讨论了这些落影模糊滤子间的关系,获得了它们的一些等价刻画。给出了落影成为落影模糊滤子及落影模糊滤子成为模糊(正)蕴涵滤子的条件。探究了落影模糊(蕴涵、正蕴涵、Boolean、G-)滤子与模糊(蕴涵、正蕴涵、 Boolean、G-)滤子之间的关系。证明了在一定条件下,剩余格的落影模糊(G-)Boolean滤子与落影模糊(正)蕴涵滤子是等价的。

关键词: 落影模糊G-滤子, 剩余格, 落影模糊蕴涵滤子, 落影模糊正蕴涵滤子, 落影模糊Boolean滤子, 落影模糊滤子

Abstract: Using the theory of falling shadows, the fuzzy filter theory of residuated lattices is reestablished. The concepts of falling fuzzy filters, falling fuzzy implicative filters, falling fuzzy Boolean filters, falling fuzzy positive implicative filters and falling fuzzy G-filters on residuated lattices are introduced and their properties are investigated. The relations among them are discussed, and some equivalent characterizations of these filters are obtained. Conditions for a falling shadow to be a falling fuzzy filter, and for a falling fuzzy filter to be a falling fuzzy(positive)implicative filter are given. The relations between a falling fuzzy(implicative, positive implicative, Boolean, G-)filter and fuzzy(implicative, positive implicative, Boolean, G-)filter are studied. It is proved that falling fuzzy(G-)Boolean filter is equivalent to falling fuzzy(positive)implicative filter under certain conditions.

Key words: falling fuzzy filter, falling fuzzy implicative filter, falling fuzzy G-filter, falling fuzzy positive implicative filter, residatued lattice, falling fuzzy Boolean filter

中图分类号: 

  • TP18
[1] 王国俊. 非经典数理逻辑与近似推理[M]. 北京:科学出版社,2005. WANG Guojun. Nonclassical mathematical logic and approximate reasoning [M]. Beijing: Science Press, 2005.
[2] WARD M, DILWORTH R P. Residuated lattices [J]. Trans Amer Math Soc, 1939, 45: 335-354.
[3] PAVELKA J. On fuzzy logic I, II, III [J]. Zeitschr F Math Logic and Grundlagend Math, 1979, 25: 45-52; 119-134; 447-464.
[4] HAJEK P. Metamathematics of fuzzy logic [M]. Dordrecht: Kluwer Academic Publisher, 1998.
[5] 裴道武. MTL代数的特征定理 [J]. 数学学报, 2007, 50(6): 1201-1206. PEI Daowu. The characterizations of MTL algebras [J]. Acta Mathematica Sincia, 2007, 50(6): 1201-1206.
[6] TURUNEN E. Boolean deductive systems of BL-algebra[J]. Arch Math Logic, 2001, 40(6): 467-473.
[7] HAVESHKI M, SAEI A B, ESLAMI E. Some types of filters in BL-algebras[J]. Soft Computing, 2006, 10(2): 657-664.
[8] LIU L Z, LI K T. Boolean filters and positive implicative filters of residuated lattices[J]. Information Sciences, 2007(177): 5725-5738.
[9] ZHU Y Q, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(16): 3614-3632.
[10] 马振明. 剩余格上的MTL-滤子及其刻画 [J]. 计算机工程与应用,2012, 48(20): 64-66. MA Zhenming. MTL-filters on residuated lattices and their characterizations [J]. Computer Engineering and Applications, 2012, 48(20): 64-66.
[11] ROSENFELD A. Fuzzy subgroups [J]. Journal of Mathematical Analysis and Applications, 1971, 35:512-517.
[12] NEGOITA C V, RALESCU D A. Applications of fuzzy sets to system analysis [M]. New York: Wiley, 1975.
[13] ANTHONY J M, SHERWOOD H. Fuzzy group redefined [J]. J Math Anal Appl, 1979, 69: 124-130.
[14] KUROK N. On fuzzy ideals and fuzzy bi-ideals in semigroups [J]. Fuzzy Sets and Systems, 1981, 5:203-215.
[15] 彭家寅,李洪兴. Fuzzy HX环的推广[J]. 数学进展, 2006, 35(1):67-74. PENG Jiayin, LI Hongxing. Generalization of fuzzy HX Ring[J]. Advances in Mathematics, 2006, 35(1):67-74
[16] MENG J, JUN Y B, KIM H S. Fuzzy implicative ideals of BCK-algebras[J]. Fuzzy Sets and Systems, 1997, 89: 243-248.
[17] 彭家寅. 亚BCI-代数的模糊理想[J]. 模糊系统与数学,2010, 24(5):37-41. PENG Jiayin. Fuzzy ideals in sub-BCI-algebras [J]. Fuzzy Systems and Mathematics, 2010, 24(5):37-41.
[18] 刘春辉. Heyting代数的模糊滤子格[J]. 山东大学学报(理学版),2013,48(2):57-60. LIU Chunhui. Fuzzy filter lattices of Heyting algebras[J]. Journal of Shandong University(Natural Science), 2013, 48(2):57-60.
[19] 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015(8): 40-45. PENG Jiayin. Soft filter of pseudo BL-algebra related to fuzzy set theory [J]. Journal of Shandong University(Natural Science), 2015(8):40-45.
[20] 刘熠,钟纯真. 格蕴涵代数的区间值T-模糊滤子理论[J]. 模糊系统与数学,2013,27(4):74-83. LIU Yi, ZHONG Chunzhen. Interval valued T-fuzzy filter theory of lattice implication algebras [J]. Fuzzy Systems and Mathematics, 2013, 27(4):74-83.
[21] 彭家寅. LA-半群中的区间值(∈,∈∨q)-模糊理想[J]. 内江师范学院学报, 2015(10):1-9. PENG Jiayin. The interval values(∈,∈∨q)-fuzzy ideals in the LA-semigroup[J]. Journal of Neijiang Normal University, 2015(10):1-9.
[22] LIU L Z, LI K T. Fuzzy Boolean and positive implicative filters of BL-algebras [J]. Fuzzy Sets and Systems, 2005, 152: 333-348.
[23] 彭家寅. BCK-代数的(s,t] -模糊子代数与R-模糊代数[J]. 内江师范学院学报, 2015(6):1-10. PENG Jiayin.(s, t] -fuzzy subalgebras and R-fuzzy algebras of BCK-algebras[J]. Journal of Neijiang Normal University, 2015(6):1-10.
[24] 房卫平. MTL-代数上的几类软滤子和模糊滤子[D]. 西安: 西北大学,2014. FANG Weiping. Some kings of soft filters and fuzzy filters on MTL-algebras[D]. Xi’an: Northwest University, 2014.
[25] 彭家寅. 模糊幂格的素理想与素对偶理想[J]. 数学的实践与认识, 2008, 38(19):143-146. PENG Jiayin. Prime ideals and prime dual ideals in fuzzy power lattices[J]. Mathematics in Practice and Theory, 2008, 38(19):143-146.
[26] 刘春辉. 关于MTL代数的模糊滤子[J]. 模糊系统与数学,2015,29(2):98-108. LIU Chunhui. On the fuzzy filters of MTL Algebras[J]. Fuzzy Systems and Mathematics, 2015, 29(2):98-108.
[27] 彭家寅. 基于连续值逻辑之BCK-代数的不分明蕴涵理想[J]. 模糊系统与数学, 2015,29(5):1-10. PENG Jiayin. Fuzzifying implicative ideals of BCK-algebras based on continuous valued logic[J]. Fuzzy Systems and Mathematics, 2015, 29(5):1-10.
[28] Van GASSE B, DESCHRIJVER G, COMELIS C, et al. Filters of residuated lattices and triangle algebras [J]. Information Sciences, 2010, 180(16): 3006-3020.
[29] ZHANG X H, ZHOU H J, MAO X Y. IMTL(MV)-filters and fuzzy IMTL(MV)-filters of residuated lattices [J]. J Intelligent Fuzzy Systems, 2014, 26: 589-596.
[30] DUMITRU B, DANA P. Some types of filters on residuated lattices [J]. Soft Comput, 2014, 18: 825-837.
[31] WANG P Z, SANCHEZ E. Treating a fuzzy subset as a projectable random subset [M]. California: College of Engineering University of California, 1982.
[32] 汪培庄. 模糊集与随机集落影[M]. 北京:北京师范大学出版社,1985. WANG Peizhuang. Fuzzy set and shadow of random set[M]. Beijing: Beijing Normal University Press, 1985.
[33] 袁学海,李洪兴,汪培庄. 基于落影表现理论下的模糊子群[J]. 模糊系统与数学,1995, 9(4): 15-19. YUAN Xuehai, LI Hongxing, WANG Peizhuang. Fuzzy subgroups based on the theory of falling shadows[J]. Fuzzy Systems and Mathematics, 1995, 9(4): 15-19.
[34] JUN Y B, OZTURK M A, FIRAT A. Characterizations of falling fuzzy positive implicative ideals in BCK-algebras [J]. Annals of Fuzzy Mathematics and Informatics, 2014, 7(2):197-204.
[35] 于明业, 张广济. BCI-代数中基于随机集落影理论上的模糊理想[J]. 大连大学学报, 2005, 26(2):1-4. YU Mingye, ZHANG Guangji. Fuzzy ideals in BCI-algebras based on the shadow theory of random sets [J]. Journal of Dalian University, 2005, 26(2):1-4.
[36] 杨永伟,贺鹏飞,李毅君. BL-代数中的落影模糊理想[J]. 山东大学学报(理学版),2015, 50(2): 83-94. YANG Yongwei, HE Pengfei, LI Yijun. Fuzzy ideal of falling shadows in BL-algebra[J]. Journal of Shandong University(Natural Science), 2015, 50(2): 83-94.
[37] 张小红, JUN Young Bae, DOH Myung Im. 关于BL代数的模糊滤子与模糊理想[J]. 模糊系统与数学,2006, 20(3):8-20. ZHANG Xiaohog, JUN Young Bae, DOH Myung Im. On fuzzy filters and fuzzy ideals of BL Algebras[J]. Fuzzy Systems and Mathematics, 2006, 20(3):8-20.
[1] 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52.
[2] 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70.
[3] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[4] 寇海燕, 吴洪博. MTL代数的Wajsberg形式及其应用[J]. 山东大学学报(理学版), 2015, 50(02): 75-82.
[5] 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报(理学版), 2014, 49(12): 87-94.
[6] 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56.
[7] 周建仁,吴洪博*. WBR0-代数的正则性及与其他逻辑代数的关系[J]. J4, 2012, 47(2): 86-92.
[8] 李玲玲, 吴洪博*. BR0-分配性及其推广[J]. J4, 2012, 47(2): 93-97.
[9] 刘熠1,2,徐扬2,秦晓燕2,秦亚3. 剩余格的TL-滤子与TL-同余关系[J]. J4, 2012, 47(2): 98-103.
[10] 秦学成,刘春辉*. 正则剩余格的 fuzzy ⊙-理想格[J]. J4, 2011, 46(8): 73-76.
[11] 马丽娜1,刘烁2*,王国俊1. 剩余格中的Fuzzy(P)滤子的结构[J]. J4, 2011, 46(3): 73-77.
[12] 马欢,张小红*. 扩展(拓扑)剩余格与Rough集[J]. J4, 2010, 45(9): 27-31.
[13] 刘春辉1,徐罗山2. 关于剩余格的理想[J]. J4, 2010, 45(4): 66-71.
[14] 郝加兴,吴洪博. 基于非交换剩余格的模糊蕴涵滤子及其性质[J]. J4, 2010, 45(10): 61-65.
[15] 秦学成, 刘春辉*. 正则剩余格的fuzzy⊙理想[J]. J4, 2010, 45(10): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!