您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (11): 65-70.doi: 10.6040/j.issn.1671-9352.0.2017.058

• • 上一篇    下一篇

基于BL系统的演绎系统集代数的剩余格属性

梁颖,崔艳丽,吴洪博   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 收稿日期:2017-02-20 出版日期:2017-11-20 发布日期:2017-11-17
  • 通讯作者: 吴洪博(1959— ), 男, 博士, 教授, 研究方向为格上拓扑与非经典数理逻辑. E-mail:wuhb@snnu.edu.cn E-mail:646010986@qq.com
  • 作者简介:梁颖(1992— ), 女, 研究方向为格上拓扑与非经典数理逻辑. E-mail:646010986@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61572016;11531009;61673250)

Properties of residuated lattice of deduction systems set algebra in BL system

LIANG Ying, CUI Yan-li, WU Hong-bo   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Received:2017-02-20 Online:2017-11-20 Published:2017-11-17

摘要: 在命题逻辑系统BL中提出了演绎系统的概念, 并且给出了由F(S)的子集生成演绎系统的方法, 证明了命题逻辑系统BL中演绎系统和结论之集的同一性; 其次, 在命题逻辑系统BL中证明了在包含偏序关系下所有演绎系统构成的集族D(F )中上, 下确界的存在性; 最后, 在D(F )中定义了二元运算∧,∨,*,→, 证明了集代数(D(F ),∧,∨,*,→,0,1)是满足可除性的完备剩余格。

关键词: 演绎系统, 模糊逻辑, 命题逻辑系统BL, 可除性, 剩余格

Abstract: Firstly, the concept of deduction system of the basic propositional logic system BL is defined, and the method generating deduction system from a subset of formula set F(S)is obtained, and the identity of deduction system and conclusions set is proved. Secondly, in propositional logic system BL the existence of supremum and infimum is proved in family D(F )consisting of all deductive systems with partial order relation of ⊆; Moreover, binary operations *,→ are defined in family D(F ), and it is proved that set algebra(D(F ),∧,∨,*,→,⊥, F(S))is a complete residuated lattice satisfying divisibility.

Key words: propositional logic system BL, deduction system, residuated lattice, fuzzy logic, divisibility

中图分类号: 

  • O141
[1] CHANG C C. Algebraic analysis of many valued logics[J]. Trans Amer Math Soc, 1958, 88(2):467-490.
[2] PAVELKA J. On fuzzy logic I: many-valued rules of inference, II: enriched residuated lattice and semantics of propositional calculi, III: semantical completeness of some many-valued propositional calculi[J]. Zeitschrf Math Logik und Grundlagender Math, 1979, 25:45-52; 119-134; 447-464.
[3] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 89(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993, 89(1):20-27.
[4] XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[M]. Heidelberg: Springer-Verlag, 2003.
[5] 王国俊. 非经典数理逻辑与近似推理[M]. 2版. 北京: 科学出版社, 2008. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. 2nd. Beijing: Science Press, 2008.
[6] 张小红. 模糊逻辑及其代数分析[M]. 北京: 科学出版社, 2008. ZHANG Xiaohong. Fuzzy logic and its algebra analysis[M]. Beijing: Science Press, 2008.
[7] Hájek P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[8] 吴洪博, 石慧君. Heyting代数及其H-空间化表示形式[J]. 电子学报, 2012, 40(5):995-999. WU Hongbo, SHI Huijun. Heyting system and its representation by H-spatilization[J]. Acta Electronica Sinica, 2012, 40(5):995-999.
[9] 吴洪博. 基础R0代数与基础L* 系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Basis R0-algebra and basis L* system[J]. Advance in Mathematics, 2003, 32(5):565-576.
[10] 吴望名. Fuzzy蕴涵代数[J]. 模糊系统与数学, 1990, 4(1):56-64. WU Wangming. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1):56-64.
[11] 刘春辉. Heyting代数的模糊滤子格[J]. 山东大学学报(理学版), 2013, 48(12):57-60. LIU Chunhui. Lattice of fuzzy filter in a Heyting algebra[J]. Journal of Shandong University(Natural Science), 2013, 48(12):57-60.
[12] 吴洪博, 汪宁. 基于正则FI代数的MT理想及其应用[J]. 电子学报, 2013, 41(7):1389-1394. WU Hongbo, WANG Ning. MT ideals of regular FI algebra with their applications[J]. Acta Electronica Sinica, 2013, 41(7):1389-1394.
[13] 吴洪博, 寇海燕. 余Frame范畴中余积的构造[J]. 数学学报(中文版), 2016, 59(1):75-90. WU Hongbo, KOU Haiyan. The construction of Co-Product in the category of Co-Frame[J]. Acta Mathematica Sinica(Chinese Series), 2016, 59(1):75-90.
[14] TURUNEN E. Mathematics behind fuzzy logic[M]. Heidelberg: Physica-Verlag, 1999.
[15] 刘春辉. 有界Heyting代数的模糊LI-理想[J]. 工程数学学报, 2016, 33(4):391-401. LIU Chunhui. Fuzzy LI-ideals in bounded Heyting algebras[J]. Chinese Journal of Engineering Mathematics, 2016, 33(4):391-401.
[16] 王国俊, 折延宏. 二值命题逻辑中理论的发散性, 相容性及其拓扑刻画[J]. 数学学报, 2007, 50(4):841-850. WANG Guojun, SHE Yanhong. Topological description of divergency and consistency of two-valued propositional theories[J]. Acta Mathematica Sinica, 2007, 50(4):841-850.
[17] 折延宏, 王国俊. 三值命题逻辑系统L*3中逻辑理论性态的拓扑刻画[J]. 数学学报, 2009, 52(6):1225-1234. SHE Yanhong, WANG Guojun. Topological characterizations of properties of logic theories in three-valued propositional logic system L*3[J]. Acta Mathematica Sinica, 2009, 52(6):1225-1234.
[18] 吴洪博. 推理闭包算子及其诱导的空间[J]. 西北大学学报(自然科学版), 2008, 38(1):9-13. WU Hongbo. The reasoning closure operator with its induced space[J]. Journal of Northwest University(Natural Science Edition), 2008, 38(1):9-13.
[1] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94.
[2] 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64.
[3] 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52.
[4] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[5] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[6] 周建仁, 吴洪博. IMTL逻辑系统的一种新扩张形式[J]. 山东大学学报(理学版), 2015, 50(12): 28-34.
[7] 寇海燕, 吴洪博. MTL代数的Wajsberg形式及其应用[J]. 山东大学学报(理学版), 2015, 50(02): 75-82.
[8] 文贤红, 吴洪博*. 局部有限BL-代数的素逆演绎系统及性质[J]. 山东大学学报(理学版), 2014, 49(2): 36-41.
[9] 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报(理学版), 2014, 49(12): 87-94.
[10] 周建仁1,2,吴洪博2*. IMTL逻辑代数的一种新强化形式[J]. 山东大学学报(理学版), 2014, 49(04): 84-89.
[11] 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56.
[12] 刘春辉1,2. Heyting代数的模糊滤子格[J]. J4, 2013, 48(12): 57-60.
[13] 刘春辉1,2. Fuzzy蕴涵代数的滤子理论刘春辉1,2[J]. J4, 2013, 48(09): 73-77.
[14] 周建仁,吴洪博*. WBR0-代数的正则性及与其他逻辑代数的关系[J]. J4, 2012, 47(2): 86-92.
[15] 李玲玲, 吴洪博*. BR0-分配性及其推广[J]. J4, 2012, 47(2): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!