您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (12): 87-94.doi: 10.6040/j.issn.1671-9352.0.2014.325

• 论文 • 上一篇    

正则剩余格的模糊超⊙-理想

刘春辉1,2   

  1. 1. 赤峰学院教务处, 内蒙古 赤峰 024001;
    2. 赤峰学院数学与统计学院, 内蒙古 赤峰 024001
  • 收稿日期:2014-07-15 修回日期:2014-10-21 出版日期:2014-12-20 发布日期:2014-12-20
  • 作者简介:刘春辉(1982- ),男,硕士,讲师,研究方向为非经典数理逻辑. E-mail:chunhuiliu1982@163.com
  • 基金资助:
    国家自然科学基金资助项目(10371106)

Fuzzy ultra ⊙-ideals in regular residuated lattices

LIU Chun-hui1,2   

  1. 1. Office of Teaching Affair, Chifeng University, Chifeng 024001, Inner Mongolia, China;
    2. Department of Mathematics and Statistics, Chifeng University, Chifeng 024001, Inner Mongolia, China
  • Received:2014-07-15 Revised:2014-10-21 Online:2014-12-20 Published:2014-12-20

摘要: 引入正则剩余格的模糊超⊙-理想概念并考察其性质, 获得了模糊超⊙-理想的几个等价刻画。在正则剩余格L的全体模糊超⊙-理想集FU(L)上定义了格运算∨, ∧和逆序对合对应, 证明了当L满足条件(P)时, (FU(L),∨,∧,,0L,1L)构成一个De Morgan代数。 在FU(L)上定义了一个伴随对(), 证明了当L满足条件(P)时, (FU(L),,0L,1L)也构成一个剩余格。

关键词: (正则)剩余格, 模糊超⊙-理想, 模糊逻辑, De Morgan代数, 模糊⊙-理想

Abstract: Firstly, the notion of fuzzy ultra ⊙-ideal is introduced and its properties are investigated in regular residuated lattices, and some equivalent characterizations of fuzzy ultra ⊙-ideals are obtained. Secondly, the lattice operations ∨, ∧ and the order-reversing involution on the set FU(L) of all fuzzy ultra ⊙-ideals in a regular residuated lattice L are defined. It is proved that (FU(L),∨,∧,,0L,1L) formes a De Morgan algebra if L satisfies the condition (P). Finally, the adjoint pair () on FU(L) is defined. It is also proved that (FU(L),,0L,1L) formes a residuated lattice if L satisfies the condition (P).

Key words: fuzzy logic, fuzzy ⊙-ideal, fuzzy ultra ⊙-ideal, De Morgan algebra, (regular)residuated lattice

中图分类号: 

  • O141.1
[1] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. 2nd. Beijing: Science Press, 2009.
[2] WARD M, DILWORTH R P. Residuated Lattices[J]. Trans Amer Math Soc, 1939, 45:335-354.
[3] PAVELKA J. On fuzzy logic (Ⅰ,Ⅱ,Ⅲ)[J]. Z Math Logic Grund Math, 1979, 25:45-52; 119-134; 447-464.
[4] 王国俊. MV-代数, BL-代数, R0-代数与多值逻辑[J]. 模糊系统与数学, 2002, 16(2):1-15. WANG Guojun. MV-algebras, BL-algebras, R0-algebras and multiple valued logic[J]. Fuzzy Systems and Mathematics, 2002, 16(2):1-15.
[5] XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[M]. Berlin: Springer, 2004.
[6] 刘春辉, 徐罗山. 关于剩余格的理想[J]. 山东大学学报:理学版, 2010, 45(4):66-71. LIU Chunhui, XU Luoshan. On ideals of residuated lattices[J]. Journal of Shandong University: Natural Science, 2010, 45(4):66-71.
[7] LIU Yonglin, LIU Anyang, QIN Keyun. ILI-ideals and prime LI-ideals in lattice implication algebras[J]. Information Sciences, 2003, 155:157-175.
[8] LIU Chunhui, XU Luoshan. On ⊙-ideals and lattice of ⊙-ideals in regular residuated lattices[J]. The 2nd International Conference on Quantitative Logic and Soft Computing, 2010: 425-434.
[9] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8:338-353.
[10] LIU Lianzhen, LI Kaitai. Fuzzy filters of BL-algebras[J]. Information Sciences, 2005, 173(1-3):141-154.
[11] 刘春辉. 格蕴涵代数的模糊LI-理想及其谱空间[J]. 高校应用数学学报:A辑, 2014, 29(1):115-126. LIU Chunhui. Prime fuzzy LI-ideals and its spectrum space of lattice implication algebras[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(1):115-126.
[12] 秦学成, 刘春辉. 正则剩余格的fuzzy ⊙-理想[J]. 山东大学学报:理学版, 2010, 45(10):66-71. QIN Xuecheng, LIU Chunhui. Fuzzy ⊙-ideals in regular residuated lattices[J]. Journal of Shandong University: Natural Science, 2010, 45(10):66-71.
[13] 秦学成, 刘春辉. 正则剩余格的fuzzy ⊙-理想格[J]. 山东大学学报:理学版, 2011, 46(8):73-76. QIN Xuecheng, LIU Chunhui. The lattice of fuzzy ⊙-ideals in regular residuated lattices[J]. Journal of Shandong University: Natural Science, 2011, 46(8):73-76.
[14] 罗从文. De Morgan代数[M]. 北京: 北京理工大学出版社, 2005. LUO Congwen. De Morgan algebras[M]. Beijing: Beijing Institute of Technology Press, 2005.
[1] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94.
[2] 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70.
[3] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[4] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[5] 周建仁, 吴洪博. IMTL逻辑系统的一种新扩张形式[J]. 山东大学学报(理学版), 2015, 50(12): 28-34.
[6] 寇海燕, 吴洪博. MTL代数的Wajsberg形式及其应用[J]. 山东大学学报(理学版), 2015, 50(02): 75-82.
[7] 周建仁1,2,吴洪博2*. IMTL逻辑代数的一种新强化形式[J]. 山东大学学报(理学版), 2014, 49(04): 84-89.
[8] 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56.
[9] 刘春辉1,2. Heyting代数的模糊滤子格[J]. J4, 2013, 48(12): 57-60.
[10] 刘春辉1,2. Fuzzy蕴涵代数的滤子理论刘春辉1,2[J]. J4, 2013, 48(09): 73-77.
[11] 周建仁,吴洪博*. WBR0-代数的正则性及与其他逻辑代数的关系[J]. J4, 2012, 47(2): 86-92.
[12] 李玲玲, 吴洪博*. BR0-分配性及其推广[J]. J4, 2012, 47(2): 93-97.
[13] 秦学成,刘春辉*. 正则剩余格的 fuzzy ⊙-理想格[J]. J4, 2011, 46(8): 73-76.
[14] 乔希民1,2,吴洪博1*. 格上BR0-代数结构的表示定理[J]. J4, 2010, 45(9): 38-42.
[15] 张琼,吴洪博*. BLΔ*系统中理论的Δ-根及广义Δ-MP问题[J]. J4, 2010, 45(4): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!