• 论文 •

### IMTL逻辑系统的一种新扩张形式

1. 1. 河西学院数学与统计学院, 甘肃 张掖 734000;
2. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
• 收稿日期:2014-10-20 修回日期:2015-01-26 出版日期:2015-12-20 发布日期:2015-12-23
• 通讯作者: 吴洪博(1959-),男,博士,教授,研究方向为格上拓扑与非经典数理逻辑.E-mail:wuhb@snnu.edu.cn E-mail:wuhb@snnu.edu.cn
• 作者简介:周建仁(1964-),男,硕士,副教授,研究方向为非经典数理逻辑.E-mail:zjr459220334@qq.com
• 基金资助:
国家自然科学基金资助项目(11171196);中央高校基本科研业务费专项基金项目(GK201501001)

### A schematic extension of IMTL logic system

ZHOU Jian-ren1, WU Hong-bo2

1. 1. College of Mathematics and Statistics, Hexi University, Zhangye 734000, Gansu, China;
2. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
• Received:2014-10-20 Revised:2015-01-26 Online:2015-12-20 Published:2015-12-23

Abstract: A new fuzzy logic system IMTL* logic is introduced. The feature of this logic system is only one logic connective concerned. It is proved that IMTL* logic is a schematic extension of IMTL logic and ?ukasiewicz logic and logic system ℵ* are both schematic extension of IMTL* Logic. Finally the pure implication representation of ?ukasiewicz logic and logic ℵ* are obtained. The fuzzy logic systems which is only one logic connective implication concerned will bring convenience to use of fuzzy logic.

• O141.1
 [1] 王国俊. 非经典数理逻辑与近似推理[M].3版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 3rd ed. Beijing: Science Press, 2006. [2] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998. [3] 王国俊. 数理逻辑引论与归结原理[M].北京:科学出版社,2006. WANG Guojun. Introduction to mathematical logic and resolution principle[M]. Beijing: Science Press, 2006. [4] 吴洪博. 基础R0-代数与基础ℵ*-系统[J].数学进展,2003,32(5):565-576. WU Hongbo. Basis R0-algebra and basis ℵ*-system[J]. Advances in Mathematics, 2003, 32(5):565-576. [5] 吴洪博,王昭海. BR0-代数的无序表示形式及WBR0-代数的性质[J].工程数学学报, 2009,26(3):456-460. WU Hongbo, WANG Zhaohai. The non-ordered form of BR0-algebra and properties of WBR0-algebra[J]. Chinese Journal of Engineering Mathematics, 2009, 26(3):456-460. [6] 吴洪博. R0-代数在一般集合上的⊕,→表示形式[J]. 吉林大学学报:自然科学版,2009,47(4):661-666. WU Hongbo. A form of R0-algebras on a set with binary operators ,→[J].Journal of Jilin University: Science Edition, 2009, 47(4):661-666. [7] 周建仁,吴洪博. 剩余偏序集及其与FI代数的关系[J].云南师范大学学报:自然科学版, 2012,32(3):1-6. ZHOU Jianren, WU Hongbo. Residuated poset and its relation with FI-algebra[J]. Journal of Yunnan Normal University: Natural Sciences Edition, 2012, 32(3):1-6. [8] 周建仁,吴洪博. WBR0-代数的正则性及与其它逻辑代数的关系[J].山东大学学报:理学版, 2012,47(2):86-92. ZHOU Jianren, WU Hongbo. The regularness of WBR0-algebras and relations with other logic algebras[J]. Journal of Shandong University: Natural Science, 2012, 47(2):86-92. [9] 李玲玲,吴洪博. BR0-分配性及其推广[J].山东大学学报:理学版, 2012,47(2):93-97. LI Lingling, WU Hongbo. BR0-distributivity and its generalization[J]. Journal of Shandong University: Natural Science, 2012, 47(2):93-97. [10] ESTEVA F, GODO L. Monoidal t-norm-based logic: towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001, 124(3):271-288. [11] 周建仁,吴洪博. IMTL 逻辑代数的一种新强化形式[J].山东大学学报:理学版, 2014,49(4):84-89. ZHOU Jianren, WU Hongbo. A schematic extension of IMTL-logic algebras[J]. Journal of Shandong University: Natural Science, 2014, 49(4):84-89. [12] WANG Sanmin, WANG Baoshu, WANG Xiangyun. A characterization of truth-functions in the nilpotent minimum logic[J]. Fuzzy Sets and Systems, 2004, 145(2):253-266.
 [1] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报（理学版）, 2018, 53(6): 86-94. [2] 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报（理学版）, 2017, 52(11): 65-70. [3] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报（理学版）, 2017, 52(10): 104-110. [4] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报（理学版）, 2016, 51(2): 102-107. [5] 寇海燕, 吴洪博. MTL代数的Wajsberg形式及其应用[J]. 山东大学学报（理学版）, 2015, 50(02): 75-82. [6] 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报（理学版）, 2014, 49(12): 87-94. [7] 周建仁1,2,吴洪博2*. IMTL逻辑代数的一种新强化形式[J]. 山东大学学报（理学版）, 2014, 49(04): 84-89. [8] 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56. [9] 刘春辉1,2. Heyting代数的模糊滤子格[J]. J4, 2013, 48(12): 57-60. [10] 刘春辉1,2. Fuzzy蕴涵代数的滤子理论刘春辉1,2[J]. J4, 2013, 48(09): 73-77. [11] 周建仁,吴洪博*. WBR0-代数的正则性及与其他逻辑代数的关系[J]. J4, 2012, 47(2): 86-92. [12] 李玲玲, 吴洪博*. BR0-分配性及其推广[J]. J4, 2012, 47(2): 93-97. [13] 秦学成,刘春辉*. 正则剩余格的 fuzzy ⊙-理想格[J]. J4, 2011, 46(8): 73-76. [14] 乔希民1,2,吴洪博1*. 格上BR0-代数结构的表示定理[J]. J4, 2010, 45(9): 38-42. [15] 张琼,吴洪博*. BLΔ*系统中理论的Δ-根及广义Δ-MP问题[J]. J4, 2010, 45(4): 60-65.
Viewed
Full text

Abstract

Cited

Shared
Discussed