山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 35-46.doi: 10.6040/j.issn.1671-9352.0.2014.424
张厚超, 朱维钧, 王俊俊
ZHANG Hou-chao, ZHU Wei-jun, WANG Jun-jun
摘要: 对一类非线性四阶双曲方程利用双线性元Q01及Q01×Q10 元给出了一个低阶协调混合元逼近格式。证明了逼近解的存在唯一性。基于上述两个单元的高精度结果,利用对时间t的导数转移技巧, 导出了原始变量u和扩散项p=-Δu 在H1模及流量=-∇u在L2模意义下具有Q(h2)阶的超逼近结果。进一步地, 借助插值后处理技术,得到了整体超收敛性。通过建立Q01×Q10元的一个新的渐近展开式,并构造一个合适的外推格式,得到O(h3)阶的外推解。这里,h表示空间剖分参数。
中图分类号:
[1] LIN Qun, WU Yonghong, LAI Shaoyong. On global solution of an initial boundary value problem for a class of damped nonlinear equation[J]. Nonlinear Analysis, 2008, 69(12):4340-4351. [2] 徐润章, 刘博为. 四阶强阻尼非线性波动方程解的整体存在性与不存在性[J]. 数学年刊, 2011, 32A(3):267-276. XU Runzhang, LIU Bowei. Global existence and nonexistence of solution for fourth order strongly damped nonlinear wave equations[J]. Chinese Annals of Mathematics, 2011, 32A(3):267-276. [3] YANG Zhijian. Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term[J]. J Differential Equations, 2003, 187(2):520-540. [4] AYTEKIN G. On the numerical solution of quasilinear wave equation with strong dissipative term[J]. Appl Math Mech: English Ed, 2004, 25(7):806-811. [5] 王震, 张立伟. 一类四阶波动方程的有限差分方法[J]. 山东科技大学学报:自然科学版, 2007, 26(4):88-91. WANG Zhen, ZHANG Liwei. Finite differential approximation for a class of fourth order wave equation[J]. Journal of Shandong University of Science: Natural Science, 2007, 26(4):88-91. [6] 张亚东, 李新祥, 石东洋. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报:理学版, 2014, 49(5):28-35. ZHANG Yadong, LI Xinxiang, SHI Dongyang. Superconvergence analysis of a nonconforming finite element for strongly damped wave equations[J]. Journal of Shandong University:Natural Science, 2014, 49(5):28-35. [7] 陈金环, 王黎娜, 石东洋. 非线性四阶双曲方程的非协调有限元分析[J]. 河南师范大学学报:自然科学版, 2012, 40(1):1-6. CHEN Jinhuan, WANG Lina, SHI Dongyang. A nonconforming element for nonlinear fourth order hyperbolic equation[J]. Journal of Henan Normal University:Natural Science, 2012, 40(1):1-6. [8] 刘洋, 李宏. 四阶强阻尼波动方程的新混合元法[J]. 计算数学, 2010, 32(2):157-170. LIU Yang, LI Hong. A new mixed finite element method for fourth order heavy damping wave equation[J]. Mathematica Numerica Sinica, 2010, 32(2):157-170. [9] 石东洋, 唐启立, 董晓静. 强阻尼波动方程的H1-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3):317-328. SHI Dongyang, TANG Qili, DONG Xiaojing. Superconvergence analysis of H1-Galerkin mixed finite element method for strongly damped wave equations[J]. Mathematica Numerica Sinica, 2012, 34(3):317-328. [10] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学, 2010, 32(2):213-218. CHEN Shaochun, CHEN Hongru. New mixed element schemes for second order elliptic problem[J]. Mathematica Numerica Sinica, 2010, 32(2):213-218. [11] 史峰, 于佳平, 李开泰. 椭圆方程的一种新型混合有限元格式[J]. 工程数学学报, 2011, 28(2):231-237. SHI Feng, YU Jiaping, LI Kaitai. A new mixed finite element scheme for elliptic equations[J]. Chinese Journal of Engineering Mathematics, 2011, 28(2):231-237. [12] 石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析[J]. 应用数学学报, 2014, 37(1):45-58. SHI Dongyang, LI Minghao. High accuracy analysis of new schemes for second order elliptic problem for recurrent event data[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(1):45-58. [13] 石东洋, 张亚东. 抛物型方程一个新的非协调混合元超收敛分析与外推[J]. 计算数学, 2013, 35(4):337-352. SHI Dongyang, ZHANG Yadong. Superconvergence and extrapolation analysis of a new nonconforming mixed finite element approximation for parabolic equation[J]. Mathematica Numerica Sinica, 2013, 35(4):337-352. [14] SHI Dongyang, ZHANG Yadong. High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations[J]. Appl Math Comput, 2011, 218(7):3176-3186. [15] SHI Dongyang, LI Minghao. Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem[J]. J Comput Math, 2014, 32(2):205-214. [16] LIU Yang, FANG Zhichao, LI Hong, et al. A coupling method based on new MFE and FE for fourth-order parabolic equation[J]. J Appl Math Comput, 2013, 43(1):249-269. [17] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定:河北大学出版社, 1996:1-13. LIN Qun, YAN Ningning. Efficient finite element analysis and structure[M]. Baoding: Hebei University Press, 1996. [18] HALE J K. Ordinary differential equations[M]. New York: Willey-Interscience, 1969:12-30. [19] SHI Dongyang, ZHANG Buying. High accuracy analysis of the finite element method for nonlinear viscoelastic wave equations with nonlinear boundary conditions[J]. J Syst Sci complex, 2011, 24:795-802. [20] 史艳华, 石东洋. Sobolev方程新混合元方法的高精度分析[J]. 系统科学与数学, 2014, 34(4):452-463. SHI Yanhua, SHI Dongyang. High accuracy analysis of a new mixed finite element method for Sobolev equation[J]. J Sys Sci and Math Scis, 2014, 34(4):452-463. |
[1] | 刁群,石东洋. 拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析[J]. 山东大学学报(理学版), 2016, 51(4): 90-98. |
[2] | 樊明智, 王芬玲, 石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(08): 78-89. |
[3] | 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71. |
[4] | 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35. |
[5] | 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71. |
[6] | 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84. |
[7] | 孟晓然1,石东伟2. 拟线性抛物问题各向异性R-T混合元分析[J]. J4, 2012, 47(2): 36-41. |
[8] | 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108. |
[9] | 王芬玲1,石东伟2. 非线性双曲方程Hermite型矩形元的高精度分析[J]. J4, 2012, 47(10): 89-96. |
[10] | 牛裕琪1,王芬玲1,石东伟2. 非线性黏弹性方程双线性元解的高精度分析[J]. J4, 2011, 46(8): 31-37. |
[11] | 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46. |
[12] | 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28. |
[13] | 罗平. 双重介质中地下水污染模型沿特征线外推的向后Euler-Galerkin 格式及交替方向预处理迭代解[J]. J4, 2011, 46(2): 70-77. |
[14] | 钱凌志1, 顾海波2. 高阶紧致格式结合外推技巧求解对流扩散方程[J]. J4, 2011, 46(12): 39-43. |
|