您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 35-46.doi: 10.6040/j.issn.1671-9352.0.2014.424

• 论文 • 上一篇    下一篇

非线性四阶双曲方程一个低阶混合元方法的超收敛和外推

张厚超, 朱维钧, 王俊俊   

  1. 平顶山学院数学与信息科学学院, 河南 平顶山 467000
  • 收稿日期:2014-09-22 修回日期:2015-03-06 出版日期:2015-12-20 发布日期:2015-12-23
  • 作者简介:张厚超(1980-),男,硕士,讲师,研究方向为有限元方法及应用.E-mail:zhc0375@126.com
  • 基金资助:
    国家自然科学基金资助项目(11271340)

Superconvergence and extrapolation of a lower order mixed finite method for nonlinear fourth-order hyperbolic equation

ZHANG Hou-chao, ZHU Wei-jun, WANG Jun-jun   

  1. School of Mathematics and Informatics, Pingdingshan University, Pingdingshan 467000, Henan, China
  • Received:2014-09-22 Revised:2015-03-06 Online:2015-12-20 Published:2015-12-23

摘要: 对一类非线性四阶双曲方程利用双线性元Q01Q01×Q10 元给出了一个低阶协调混合元逼近格式。证明了逼近解的存在唯一性。基于上述两个单元的高精度结果,利用对时间t的导数转移技巧, 导出了原始变量u和扩散项p=-ΔuH1模及流量=-∇uL2模意义下具有Q(h2)阶的超逼近结果。进一步地, 借助插值后处理技术,得到了整体超收敛性。通过建立Q01×Q10元的一个新的渐近展开式,并构造一个合适的外推格式,得到O(h3)阶的外推解。这里,h表示空间剖分参数。

关键词: 非线性四阶双曲方程, 超逼近, 超收敛, 混合元方法, 外推

Abstract: With the help of the bilinear element Q11 and the Q01×Q10 element, a lower order conforming mixed finite element approximation scheme is proposed for nonlinear fourth-order hyperbolic equation. Firstly, the existence and uniqueness of approximation solution are proved. Secondly, Based on the known high accuracy results of the about two elements, by use of derivative delivery techniques, the superclose with order O(h2) for both scalar unknown u and the diffusion term v=-Δu in H1-norm and the flux p=-∇u in L2-norm are derived, respectively. Moreover, the global superconvergence is obtained through interpolation post-processing technique. Finally, throught constructing a new asymptotic expansion formula of Q01×Q10 element and a suitable extrapolation scheme, the extrapolation solutions with order O(h3) are derived. Here, h is the subdivision parameter for the space.

Key words: superclose, extrapolation, superconvergence, nonlinear fourth-order hyperbolic equation, mixed finite element methods

中图分类号: 

  • O242.21
[1] LIN Qun, WU Yonghong, LAI Shaoyong. On global solution of an initial boundary value problem for a class of damped nonlinear equation[J]. Nonlinear Analysis, 2008, 69(12):4340-4351.
[2] 徐润章, 刘博为. 四阶强阻尼非线性波动方程解的整体存在性与不存在性[J]. 数学年刊, 2011, 32A(3):267-276. XU Runzhang, LIU Bowei. Global existence and nonexistence of solution for fourth order strongly damped nonlinear wave equations[J]. Chinese Annals of Mathematics, 2011, 32A(3):267-276.
[3] YANG Zhijian. Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term[J]. J Differential Equations, 2003, 187(2):520-540.
[4] AYTEKIN G. On the numerical solution of quasilinear wave equation with strong dissipative term[J]. Appl Math Mech: English Ed, 2004, 25(7):806-811.
[5] 王震, 张立伟. 一类四阶波动方程的有限差分方法[J]. 山东科技大学学报:自然科学版, 2007, 26(4):88-91. WANG Zhen, ZHANG Liwei. Finite differential approximation for a class of fourth order wave equation[J]. Journal of Shandong University of Science: Natural Science, 2007, 26(4):88-91.
[6] 张亚东, 李新祥, 石东洋. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报:理学版, 2014, 49(5):28-35. ZHANG Yadong, LI Xinxiang, SHI Dongyang. Superconvergence analysis of a nonconforming finite element for strongly damped wave equations[J]. Journal of Shandong University:Natural Science, 2014, 49(5):28-35.
[7] 陈金环, 王黎娜, 石东洋. 非线性四阶双曲方程的非协调有限元分析[J]. 河南师范大学学报:自然科学版, 2012, 40(1):1-6. CHEN Jinhuan, WANG Lina, SHI Dongyang. A nonconforming element for nonlinear fourth order hyperbolic equation[J]. Journal of Henan Normal University:Natural Science, 2012, 40(1):1-6.
[8] 刘洋, 李宏. 四阶强阻尼波动方程的新混合元法[J]. 计算数学, 2010, 32(2):157-170. LIU Yang, LI Hong. A new mixed finite element method for fourth order heavy damping wave equation[J]. Mathematica Numerica Sinica, 2010, 32(2):157-170.
[9] 石东洋, 唐启立, 董晓静. 强阻尼波动方程的H1-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3):317-328. SHI Dongyang, TANG Qili, DONG Xiaojing. Superconvergence analysis of H1-Galerkin mixed finite element method for strongly damped wave equations[J]. Mathematica Numerica Sinica, 2012, 34(3):317-328.
[10] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学, 2010, 32(2):213-218. CHEN Shaochun, CHEN Hongru. New mixed element schemes for second order elliptic problem[J]. Mathematica Numerica Sinica, 2010, 32(2):213-218.
[11] 史峰, 于佳平, 李开泰. 椭圆方程的一种新型混合有限元格式[J]. 工程数学学报, 2011, 28(2):231-237. SHI Feng, YU Jiaping, LI Kaitai. A new mixed finite element scheme for elliptic equations[J]. Chinese Journal of Engineering Mathematics, 2011, 28(2):231-237.
[12] 石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析[J]. 应用数学学报, 2014, 37(1):45-58. SHI Dongyang, LI Minghao. High accuracy analysis of new schemes for second order elliptic problem for recurrent event data[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(1):45-58.
[13] 石东洋, 张亚东. 抛物型方程一个新的非协调混合元超收敛分析与外推[J]. 计算数学, 2013, 35(4):337-352. SHI Dongyang, ZHANG Yadong. Superconvergence and extrapolation analysis of a new nonconforming mixed finite element approximation for parabolic equation[J]. Mathematica Numerica Sinica, 2013, 35(4):337-352.
[14] SHI Dongyang, ZHANG Yadong. High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations[J]. Appl Math Comput, 2011, 218(7):3176-3186.
[15] SHI Dongyang, LI Minghao. Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem[J]. J Comput Math, 2014, 32(2):205-214.
[16] LIU Yang, FANG Zhichao, LI Hong, et al. A coupling method based on new MFE and FE for fourth-order parabolic equation[J]. J Appl Math Comput, 2013, 43(1):249-269.
[17] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定:河北大学出版社, 1996:1-13. LIN Qun, YAN Ningning. Efficient finite element analysis and structure[M]. Baoding: Hebei University Press, 1996.
[18] HALE J K. Ordinary differential equations[M]. New York: Willey-Interscience, 1969:12-30.
[19] SHI Dongyang, ZHANG Buying. High accuracy analysis of the finite element method for nonlinear viscoelastic wave equations with nonlinear boundary conditions[J]. J Syst Sci complex, 2011, 24:795-802.
[20] 史艳华, 石东洋. Sobolev方程新混合元方法的高精度分析[J]. 系统科学与数学, 2014, 34(4):452-463. SHI Yanhua, SHI Dongyang. High accuracy analysis of a new mixed finite element method for Sobolev equation[J]. J Sys Sci and Math Scis, 2014, 34(4):452-463.
[1] 刁群,石东洋. 拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析[J]. 山东大学学报(理学版), 2016, 51(4): 90-98.
[2] 樊明智, 王芬玲, 石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(08): 78-89.
[3] 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71.
[4] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35.
[5] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71.
[6] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[7] 孟晓然1,石东伟2. 拟线性抛物问题各向异性R-T混合元分析[J]. J4, 2012, 47(2): 36-41.
[8] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108.
[9] 王芬玲1,石东伟2. 非线性双曲方程Hermite型矩形元的高精度分析[J]. J4, 2012, 47(10): 89-96.
[10] 牛裕琪1,王芬玲1,石东伟2. 非线性黏弹性方程双线性元解的高精度分析[J]. J4, 2011, 46(8): 31-37.
[11] 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46.
[12] 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28.
[13] 罗平. 双重介质中地下水污染模型沿特征线外推的向后Euler-Galerkin 格式及交替方向预处理迭代解[J]. J4, 2011, 46(2): 70-77.
[14] 钱凌志1, 顾海波2. 高阶紧致格式结合外推技巧求解对流扩散方程[J]. J4, 2011, 46(12): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!