您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 47-53.doi: 10.6040/j.issn.1671-9352.0.2014.559

• 论文 • 上一篇    下一篇

E-quantale范畴

梁少辉   

  1. 西安科技大学理学院数学系, 陕西 西安 710054
  • 收稿日期:2014-12-10 修回日期:2015-09-06 出版日期:2015-12-20 发布日期:2015-12-23
  • 作者简介:梁少辉(1981-),男,博士,讲师,研究方向为格上拓扑与模糊推理.E-mail:liangshaohui1011@163.com
  • 基金资助:
    国家自然科学基金资助项目(11001158,71103145);陕西省科技计划项目(2011JQ1016);陕西省教育厅科研计划项目(12JK0858);西安科技大学培育基金(2010041)

The category of E-quantales

LIANG Shao-hui   

  1. Department of Mathematics, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
  • Received:2014-12-10 Revised:2015-09-06 Online:2015-12-20 Published:2015-12-23

摘要: 引入了E-quantale的定义及其一些相关概念, 讨论了E-quantale的一些重要性质。 证明了Quantale的幂集和E-quantale的乘积均可构成E-quantale, 给出了Quantale的一种自然扩张,由E-quantale可以扩张成一个Quantale。 在Quantale子范畴和E-quantale范畴之间定义了一个嵌入函子K, 并在函子K与遗忘函子U之间构造了一个自然变换, 证明了在一定条件下一个E-quantale和某个单位Quantale的幂集同构。

关键词: 范畴, 自然变换, 函子, Quantale, E-quantale同态

Abstract: The definition of an E-quantale is introduced, and some properies of E-quantale is obtained. It is proved that the power set of Quantale and the product of E-quantales are E-quantales. Finally, an embedding functor K from the subcategory of Quantales to the category of E-quantale is introducted, and a natural transformation from functor K and forgotten functor U is constructed. Moreover, under some conditions an E-quantale is isomorphic to the power set of a unital Quantale.

Key words: Quantale, category, functor, E-quantale morphisms, natural transformation

中图分类号: 

  • O153.1
[1] MULVEY C J. Second topology conference (Taormina,1984)[J]. Rend Circ Mat Palermo(2): Suppl, 1986, 12:99-104.
[2] MULVEY C J, PELLETIER J W. On the quantisation of point[J]. Journal of Pure and Applied Algebra, 2001, 159:231-295.
[3] NIEFIELD S, ROSENTHAL K I. Strong de Morgan's law and the spectrum of a commutative ring[J]. Journal of Algebra, 1985, 93:169-181.
[4] GIRARD J Y. Linear logic[J]. Theoretical Computer Science, 1987, 50:1-102.
[5] BERNI-CANANI U, BORCEUX F, SUCCI-CRUCIANI R. A theory of quantale sets[J]. Journal of Pure and Applied Algebra, 1989, 62:123-136.
[6] ROSENTHAL K I. Quantales and their applications[M]. London: Longman Scientific and Technical, 1990.
[7] VERMEULEN J J C. Proper maps of locales[J]. Journal of Pure and Applied Algebra, 1994, 92:79-107.
[8] MIRAGLIA F, SOLITRO U. Sheaves over right sided idempotent quantales[J]. Logic J IGPL, 1998, 6(4):545-600.
[9] CONIGLIO M E, MIRAGLIA F. Modules in the category of sheaves over quantales[J]. Annals of Pure and Applied Logic, 2001, 108:103-136.
[10] KRUML D. Spatial quantales[J]. Applied Categorial Structures, 2002, 10: 49-62.
[11] RESENDE P. Sup-lattice 2-forms and quantales[J]. Journal of Algebra, 2004, 276:143-167.
[12] 刘智斌,赵彬. Quantale范畴的代数性[J].数学学报, 2006, 49(6):1253-1258. LIU Zhibin, ZHAO Bin. Algebraic properties of category of quantale[J]. Acta Mathematica Sinica, 2006, 49(6):1253-1258.
[13] 赵斌,梁少辉. 双Quantaler模范畴[J]. 数学学报, 2009, 52(4):821-832. ZHAO Bin, LIANG Shaohui. The category of doubel Quantale modules[J]. Acta Mathematica Sinica, 2009, 52(4) : 821-832.
[14] 梁少辉. L-fuzzy quantale的若干性质[J]. 山东大学学报:理学版,2012,47(4):104-109. LIANG Shaohui. Resarches on some properties of L-fuzzy quantale[J]. Journal of Shandong University: Natural Science, 2012, 47(4):104-109.
[15] LEDDA A, KONIG M, PAOLI F. MV algebras and quantum computation[J]. Studia Logica, 2006, 82(2):245-270.
[16] PASEKA J. Projective quantales: a general view[J]. International Journal of Theoretical Physics, 2008, 47(1):291-296.
[17] REMIGIJUS P G. Extensions of states on MV-quantales[J]. Fuzzy Sets and Systems, 2012, 194:31-51.
[18] TAO Yuantao, LAI Hongliang, ZHANG Dexue. Quantale-valued preorders: Globalization and cocompleteness[J]. Fuzzy Sets and Systems, 2014, 256: 236-251.
[19] RESENDE P. Functoriality of groupoid quantales[J]. Journal of Pure and Applied Algebra, 2015, 219(8):3089-3109.
[20] PULTR A. Notes on an extension of the structure of frame[J]. Discrete Mathematics, 1992, 108(2):107-114.
[21] PICADO J. On extended frames[J]. Commentationes Mathematicae Universitatis Carolinae, 1995, 36(3):537-549.
[22] HERRILICH H, STRECKER E. Category theory[M]. Berlin: Heldermann Verlag, 1979.
[1] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[2] 王守峰. 具有可乘逆断面的正则半群上的预同态和限制积[J]. 山东大学学报(理学版), 2017, 52(8): 90-93.
[3] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[4] 刘妮,张苗苗. 连续定向完备序半群及其范畴性质[J]. 山东大学学报(理学版), 2016, 51(6): 57-64.
[5] 冯清,黄菊. Monoidal范畴的两种构造[J]. 山东大学学报(理学版), 2016, 51(4): 30-34.
[6] 沈冲, 姚卫. 模糊完备格上模糊G-理想和模糊Galois伴随之间的一一对应[J]. 山东大学学报(理学版), 2015, 50(04): 36-41.
[7] 刘洋1,王正萍2,许庆兵2. Gabriel单子与模范畴的局部化[J]. 山东大学学报(理学版), 2014, 49(2): 24-28.
[8] 郭双建1,董丽红2. 广义H-李代数的Engel定理[J]. 山东大学学报(理学版), 2014, 49(04): 55-57.
[9] 闫婷婷,刘仲奎. 余分解维数[J]. J4, 2013, 48(8): 5-14.
[10] 李海洋. 闭集格范畴的定向极限[J]. J4, 2013, 48(6): 100-103.
[11] 王圣祥1,2,郭双建2. 一类对称范畴上的Hom-Hopf模[J]. J4, 2013, 48(4): 40-45.
[12] 许庆兵1,陈华喜2. 关于模范畴的商范畴与局部化[J]. J4, 2013, 48(4): 46-50.
[13] 刘敏, 赵彬*. Quantale上的Localic核与Localic余核映射[J]. J4, 2013, 48(2): 81-87.
[14] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20-22.
[15] 陈华喜1,张晓辉2,许庆兵3. Yetter-Drinfeld模范畴上的弱余模代数结构定理[J]. J4, 2013, 48(12): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!