您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 46-51.doi: 10.6040/j.issn.1671-9352.0.2017.222

• • 上一篇    下一篇

带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理

杨丹丹   

  1. 淮阴师范学院数学科学学院, 江苏 淮安 223300
  • 收稿日期:2017-05-10 出版日期:2018-02-20 发布日期:2018-01-31
  • 作者简介:杨丹丹(1982— ), 女,博士,副教授, 研究方向为非线性泛涵分析及其应用. E-mail:ydd423@sohu.com
  • 基金资助:
    国家自然科学基金资助项目(11426141);江苏省自然科学基金资助项目(BK20170067)

Endpoint theorem on existence of solutions for Hadamard-type fractional differential inclusions with nonlocal integral boundary value conditions

YANG Dan-dan   

  1. School of Mathematical Science, Huaiyin Normal University, Huaian 223300, Jiangsu, China
  • Received:2017-05-10 Online:2018-02-20 Published:2018-01-31

摘要: 利用多值映射的不动点定理, 给出了以下带有非局部积分边值Hadamard型分数阶微分包含解的终结点型存在性定理:{Dαx(t)∈F(t,x(t)), 1e, 1<α≤2, x(1)=x(0), A/(Γ(γ))∫η1(logη/s)γ-1(x(s))/sds+Bx(e)=c, γ>0, 1<η<e, 其中Dα表示Hadamard型分数阶导数, F:[1,e]×R→P(R)是多值映射, A,B,c是常数。 所得结果将已有的单值结果推广到多值情形。

关键词: 多值映射, 边值条件, Hadamard型分数阶微分包含, 终结点定理

Abstract: Based on fixed-point theorem for multi-value maps, the endpoint theorem on the existence of solutions for the following Hadamard fractional order differential inclusions with nonlocal integral boundary value problems is given:{Dαx(t)∈F(t,x(t)), 1e, 1<α≤2, x(1)=x(0), A/(Γ(γ))∫η1(logη/s)γ-1(x(s))/sds+Bx(e)=c, γ>0, 1<η<e, where Dα is Hadamard type fractional derivative, F:[1,e]×R→P(R)is a multi-valued map, A,B,c are constants. The aim of this paper is to extend known single value result to multi-valued framework.

Key words: Hadamard-type fractional differential inclusions, endpoint theorem, multi-valued maps, boundary value conditions

中图分类号: 

  • O175.14
[1] AGARWAL R P, BALEANU D, HEDAYATI V, et al. Two fractional derivative inclusion problems via integral boundary condition[J]. Applied Mathematics and Computation, 2015, 257(2):205-212.
[2] AHMAD B, AGARWAL R P, ALlSAEDI A. Fractional differential equations and inclusions with semiperiodic and three-point boundary conditions[J]. Boundary Value Problems, 2016, 2016(1):1-20.
[3] WANG Jinrong, IBRAHIM A G, FECKAN M. Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces[J]. Applied Mathematics and Computation, 2015, 257(1):103-118.
[4] YANG Dandan. Existence of solutions for fractional differential inclusions with boundary conditions[J]. Electronic Journal of Differential Equations, 2010, 2010(92):1-10.
[5] 杨丹丹. 带有积分边值条件的分数阶微分包含解的存在性[J].浙江大学学报(理学版),2015,42(6):688-692. YANG Dandan. Existence of solutions for fractional differential inclusions with integral boundary conditions[J]. Journal of Zhejiang university(Natural Science), 2015, 42(6):688-692.
[6] HADAMARD J. Essai sur lerude des fonctions donnees par leur developmenr de Taylor[J]. Journal De Mathematiques Pures Et Appliquees, 1892, 8(1):101-186.
[7] AGARWAL R P, NTOUYAS S K, AHMAD B, et al. Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments[J]. Advances in Difference Equations, 2016, 2016(1):1-15.
[8] AHMAD B, NTOUYAS S K, TARIBOON J. A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory[J]. Applied Mathematics Letters, 2016, 52(1):9-14.
[9] KILBAS A A. Hadamard-type fractional calculus[J]. Journal of Korean Mathematical Society, 2001, 38(6):1191-1204.
[10] NTOUYAS S K, TARIBOON J. Fractinal integral problems for Hadamard-Caputo fractional Langevin differential inclusions[J]. Applied Mathematics and Computation, 2016, 51(1):13-33.
[11] NTOUYAS S K, ETEMAD S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation, 2015, 266(3):235-243.
[12] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland: Elsevier Science Ltd, 2006.
[13] PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
[14] SAMKO S G, KILBAS A A, MARICHEV O I. Fractional integral and derivatives: theory and applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
[15] DEIMLING K. Multi-valued differential equations[M]. Berlin: Walter de Gruyter, 1992.
[16] AMINI-HARANDI A. Endpoints of set-valued contractions in metric space[J]. Nonlinear Analysis, 2010, 72(1):132-134.
[17] ALlSAEDI A, NTOUYAS S K, AHMAD B, et al. Nonlinear Hadamard fractional differential equations with Hadamard type nonlocal non-conserved conditions[J]. Advances in Difference Equations, 2015, 2015(1):1-13.
[1] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[2] 高洁. 多点边值问题的特征值结构[J]. J4, 2011, 46(8): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!