《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 40-48.doi: 10.6040/j.issn.1671-9352.0.2019.157
• • 上一篇
陈林
CHEN Lin
摘要: 研究一类非线性项依赖于解的梯度项的N-Kirchhoff型问题解的存在性。运用基于迭代技巧的变分方法证明了该问题至少具有一个正的弱解。
中图分类号:
[1] MOMONIAT E, HARLEY C. An implicit series solution for a boundary value problem modelling a thermal explosion[J]. Math Comput Modelling, 2011, 53(1/2):249-260. [2] PEEBLES P J E. Star distribution near a collapsed object[J]. Astrophysical Journal, 1972, 178(2):371-376. [3] SHAO Zhiqiang. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation[J]. Z Angew Math Phys, 2018, 69(2):1-44. [4] AMANN H, CRANDALL M G. On some existence theorems for semi-linear elliptic equations[J]. Indiana Univ Math J, 1978, 27(5):779-790. [5] FERIA L F O, MIYAGAKI O H, MOTREANU D, et al. Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient[J]. Nonlinear Anal, 2014, 96:154-166. [6] POHOZAEV S. On equations of the type Δu=f(x,u,Du)[J]. Mat Sb, 1980, 113(2):324-338. [7] KIRCHHOFF G. Mechanik[M]. Leipzig, Germany: Teubner, 1883. [8] LIONS J L. On some questions in boundary value problems of mathematical physics[C] // JANEIRO R. International Symposium on Continuum, Mechanics and Partial Differential Equations. Amsterdam: North-Holland, 1978: 284-346. [9] FIGUEIREDO D D, GIRARDI M, MATZEU M. Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques[J]. Differ Integ Eq, 2004, 17(2):119-126. [10] FIGUEIREDO G M. Quasilinear equations with dependence on the gradient via mountain pass techniques in RN[J]. Applied Mathematics and Computations, 2008, 203(1):14-18. [11] FREITAS L R D. Mutiplicity of solutions for a class of quasilinear equations with exponential critical growth[J]. Nonlinear Anal, 2014, 95:607-624. [12] DÍAZ J I. Nonlinear partial differential equations and free boundaries: elliptic equations(Vol.I)[M]. Boston: Res Notes Math, 1985. [13] DOÓ J M, MEDEIROS E, SEVERO U. On a quasilinear nonhomogeneous elliptic equation with critical growth in RN[J]. J Differential Equations, 2009, 246(4):1363-1386. [14] TRUDINGER N. On imbedding into Orlicz space and some applications[J]. J Math Mech, 1967, 17(3):473-484. [15] DO Ó J M, MEDEIROS E S. Remarks on least energy solutions for quasilinear elliptic problems in RN[J]. Electron J Differential Equations, 2003(83):1-14. [16] BERESTYCKI H, LIONS P L. Nonlinear scalar field equations I: existence of ground state[J]. Arch Rational Mech Anal, 1983, 82(4):313-346. [17] DO Ó J M,SOUZA M D, MEDEIROS E D, et al. Critical points for a functional involving critical growth of Trudinger-Moser type[J]. Potential Anal, 2015, 42(1):229-246. [18] AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal, 1973, 14(4):349-381. [19] DIBENEDETTO E. C1+α local regularity of weak solutions of degenerate elliptic equations[J]. Nonlinear Anal, 1983, 7(8):827-850. |
[1] | 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6. |
[2] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[3] | 刘文月,孙同军. 椭圆方程约束的最优边界控制问题的非重叠型区域分解迭代方法[J]. 山东大学学报(理学版), 2016, 51(2): 21-28. |
[4] | 王建国,刘春晗. Banach空间积-微分方程含间断项边值问题的解[J]. J4, 2013, 48(10): 18-22. |
[5] | 卢拉拉,窦家维. 一类具有比例和常数脉冲收获的周期竞争系统周期解的存在性[J]. J4, 2012, 47(9): 98-104. |
[6] | . 求解变分不等式的修正三步迭代法[J]. J4, 2009, 44(6): 69-74. |
[7] | . 一类pLaplacian多点边值问题单调迭代正解的存在性[J]. J4, 2009, 44(5): 81-85. |
[8] | 董丽丽,刘衍胜 . Banach空间中二阶混合型积分-微分方程边值问题的解[J]. J4, 2008, 43(6): 49-52 . |
[9] | 刘洪华 . 色散方程的交替分组迭代方法[J]. J4, 2007, 42(1): 19-23 . |
[10] | 李磊,张玉海 . 矩阵方程X+A*XqA=I(q>0)的Hermite正定解[J]. J4, 2006, 41(4): 32-39 . |
[11] | 徐云飞,吕广世 . 九个几乎相等的素数的立方之和[J]. J4, 2006, 41(2): 59-62 . |
|