您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 11-15.doi: 10.6040/j.issn.1671-9352.0.2019.174

• • 上一篇    

关于1-(k,m)-逗点码的一个注记

刘海艳,郭聿琦*   

  1. 兰州大学数学与统计学院, 甘肃 兰州 730000
  • 发布日期:2019-06-05
  • 作者简介:LIU Hai-yan(1985— ), Female, PhD.Student, Associate Professor, Her research interests mainly include combinatorial semigroups. E-mail: liuhy16@lzu.edu.cn*Communication author
  • 基金资助:
    SupportedbyNationalNaturalScienceFoundationofChina(11861051)

Anote-on-1-(k,m)-comma-codes ——several studies on combinatorial semigroups(Ⅲ)

LIU Hai-yan, GUO Yu-qi*   

  1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu, China
  • Published:2019-06-05

摘要: 令L是A上的一个非空语言,k∈N0, m∈N。如果L满足(LAk)mL∩A+(LAk)m-1LA+=Ø,那么L是一个码,叫做(k,m)-逗号码。 如果L的每个单点集都是一个(k,m)-逗号码,那么L称为1-(k,m)-逗号码。众所周知,1-(k,m)-逗号码类是2Xk\{Ø},其中Xk ={u∈A+|(∠w∈Ak)uwu∩A+uA+=Ø}。 Jürgensen等指出X0是本原字构成之集。 Cui等借助于有界字、无界字和本原字刻画了X1。本文中,我们讨论Xk,其中k≥2。

关键词: 字的组合, (k,m)-逗号码, 1-(k,m)-逗号码

Abstract: Let L be a nonempty language over A, k∈N0 and m∈N. If L satisfies (LAk)mL∩A+(LAk)m-1LA+=Ø, then it is a code called (k,m)-comma code. If every singleton of L is a (k,m)-comma code, then it is called a 1-(k,m)-comma code. It is known that the class of 1-(k,m)-comma code is 2Xk\{Ø}, where Xk ={u∈A+|(∠w∈Ak)uwu∩A+uA+=Ø}. Jürgensen et al. showed that X0 is the set of primitive words. Cui et al. gave a characterization of X1 in terms of bordered words, unbordered words, and primitive words. In this paper, we discuss Xk for any k≥2.

Key words: combinatorics of words, (k,m)-comma code, 1-(k,m)-comma code

中图分类号: 

  • O157.4
[1] BERSTEL J, PERRIN D. Theory of codes[M]. Orlando: Academic Press, 1985.
[2] ROZENBERG G. Handbook of formal languages[M] // SALOMAA A. Word, Language, Grammar, Vol.1. Berlin: Springer, 1997.
[3] CAO C H, LIU H Y, YANG D. Characterizations of k-comma codes and k-comma intercodes[J]. Acta Inf, 2016, 53:23-33.
[4] CUI B, KARI L, SEKI S. k-comma codes and their generalizations[J]. Fund Inf, 2011, 107:1-18.
[5] JÜRGENSEN H, YU S S. Relations on free monoids, their independent sets, and codes[J]. Intern J Computer Math, 1991, 40:17-46.
[6] SHYR H J. Free monoids and languages[M]. 3rd. [S.l.] : Hon Min Book Company, 2001.
[1] 宋贤梅,熊蕾. Z2a+uZ2a 上线性码的MacWilliams恒等式及自对偶码[J]. 山东大学学报(理学版), 2016, 51(2): 72-78.
[2] 刘修生,刘花璐. 环Fp+vFp上线性码的MacWilliams恒等式[J]. J4, 2013, 48(12): 61-65.
[3] 冷静,郭聿琦. 关于内缀链的几点注记[J]. 《山东大学学报(理学版)》, 2019, 54(6): 8-10.
[4] 刘祖华,郭聿琦. 稀疏语言与r-析取语言的连接[J]. 《山东大学学报(理学版)》, 2019, 54(6): 2-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!