您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (7): 88-102, 110.doi: 10.6040/j.issn.1671-9352.0.2019.290

•   • 上一篇    下一篇

需求和成本扰动下闭环供应链的应急决策及协调研究

孙丹丹(),李珂*(),谢礼斌,牟宗玉   

  1. 青岛大学商学院, 山东 青岛 266071
  • 收稿日期:2019-05-15 出版日期:2020-07-20 发布日期:2020-07-08
  • 通讯作者: 李珂 E-mail:17854239588@163.com;605495315@qq.com
  • 作者简介:孙丹丹(1994—),女,硕士研究生,研究方向为物流与供应链管理. E-mail:17854239588@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2017BG002);中国博士后科学基金项目(2016M592149)

Channel decisions and coordination of closed-loop supply chain under demand and cost disruptions

Dan-dan SUN(),Ke LI*(),Li-bin XIE,Zong-yu MU   

  1. School of Business, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2019-05-15 Online:2020-07-20 Published:2020-07-08
  • Contact: Ke LI E-mail:17854239588@163.com;605495315@qq.com

摘要:

针对突发事件干扰需求和成本扰动的情况,构建了零售商回收、制造商回收和第三方回收等类别闭环供应链的应急决策模型。研究表明:在3类回收系统和集中式决策系统中,相比较正常运营环境下的均衡决策,当需求和成本的综合扰动程度不大时,产品销售量和废旧品回收率等均具鲁棒性,但应随市场需求扰动方向调整产品的批发价和销售价;当需求和成本的综合扰动程度较大时,应随市场需求扰动方向同时调整产品的批发价、销售价、销售量和废旧品的回收率;当需求减少和成本增加的综合扰动程度很大时, 3类回收系统和集中式决策系统会被破坏;在需求和成本扰动的各类情况下,制造商选择MRCRM系统运营可获得较大利润;当需求减少和成本增加的综合扰动程度超过一定阈值时,因集中式决策系统会承担较多的额外处理成本,使得利润减少较多,故其利润会小于MRCRM系统的总利润,在其他扰动情况下,可通过应急收益费用共享契约协调解决MRCRM系统中存在的“双重边际效应”问题,提高系统的运营效率,并使各成员均获得帕累托改进的利润。

关键词: 闭环供应链, 需求, 成本, 渠道决策, 收益费用共享契约

Abstract:

Considering demand and cost are disrupted by emergency events, there are three CLSC emergency models, i.e. retailer collecting, manufacturer collecting and third-party collecting. In the three decentralized collecting systems and centralized decision system, compared with equilibrium decisions in normal environment, when the disruptions of demand and cost are not large, sales quantity of products and collecting rate of used products have some robustness, but the wholesale price and selling price of products should be adjusted along the same direction with demand disruption; when the disruptions of demand and cost are large, the wholesale price, selling price, sales quantity of products and collecting rate of used products should be adjusted along the same direction with demand disruption; when the degree of demand decreasing and cost increasing are large, the three decentralized collecting systems and centralized decision system are all destroyed. In each case of demand and cost disruptions, manufacturer can obtain more profits by MRCRM system; when the degree of demand decreasing and cost increasing exceeds a certain threshold, the profits of centralized decision system decrease resulted from assuming more extra disposing costs, which results in its profits are less than MRCRM system. Furthermore, in other disruption cases, emergency revenue and expense sharing contract can solve "double marginalization" problems in MRCRM system, which improves system's operation efficiency and makes each member get Pareto improved profits.

Key words: closed-loop supply chain, demand, cost, channel choice, revenue and expense sharing contract

中图分类号: 

  • F272

图1

3类回收闭环供应链系统"

图2

突发事件干扰下系统的运营过程"

表1

模型中的符号说明及其意义"

符号 意义 符号 意义
cm 使用原材料生产新产品单位生产成本 β 市场上产品价格敏感系数
cr 使用废旧品生产再造品单位生产成本 q 产品的销售量(零售商的决策变量)
w 制造商给零售商产品单位批发价 A 回收商回收废旧品单位回收价
b 制造商从回收方处回收废旧品单位回收价(制造商的决策变量) τ 废旧品回收率, 0≤τ≤1
p 零售商处产品单位销售价(零售商的决策变量) CL 回收努力成本系数
ϕ 产品的最大市场需求规模 δ δ=cm-cr

表2

3类回收系统和集中式决策系统的应急决策和利润比较"

扰动区间 系统总利润 制造商利润
Δϕ>0, Δc<0 $ 0 \le \Delta \phi - \beta \Delta c < \frac{{4{C_{\rm{L}}}\left[ {\phi - \beta {c_{\rm{m}}} - \beta \left( {\delta - A} \right)} \right]\left( {\delta - A} \right)}}{{\left( {\delta - A} \right)}} + \beta {\lambda _2} $ $ {\mathit{\overline \Pi} ^{\rm{c}}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{R}} $ $ \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{M}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{T}}$
Δϕ<0, Δc>0 $ \sqrt {6\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} - \left( {\phi - \beta {c_{\rm{m}}}} \right) - \beta {\lambda _1} < \Delta \phi - \beta \Delta c \le 0 $ $ {\mathit{\overline \Pi} ^{\rm{c}}} > \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{R}} $
$ - \left( {\phi - \beta {c_{\rm{m}}}} \right) - \beta {\lambda _1} \le \Delta \phi - \beta \Delta c < \sqrt {6\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} - \left( {\phi - \beta {c_{\rm{m}}}} \right) - \beta {\lambda _1} $ $ {\mathit{\overline \Pi} ^{\rm{c}}} \le \mathit{\overline \Pi} _{\rm{m}}^{\rm{R}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{R}} $

表3

3类回收系统和集中式决策系统的应急决策和利润"

扰动范围 (-(ϕ-βcm)-βλ1, -βλ1] (-βλ1, βλ2) $ \left[ {\beta {\lambda _2}, \frac{{4{C_{\rm{L}}}\left[ {\phi - \beta {c_{\rm{m}}} + \beta \left( {\delta - A} \right)} \right]\left( {\delta - A} \right)}}{{\left( {\delta - A} \right)}} + \beta {\lambda _2}} \right] $
价格 MRCRM $ {p^{{{\rm{R}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{R}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{R}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCM $ {p^{{{\rm{M}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{M}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{M}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCTM $ {p^{{{\rm{T}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{T}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{T}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
集中式 $ {p^{{{\rm{c}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ {p^{{{\rm{c}}^*}}} + \frac{{\Delta \phi }}{\beta } $ $ {p^{{{\rm{c}}^*}}} + \frac{{\Delta \phi }}{\beta } - \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
产量 MRCRM $ {q^{{{\rm{R}}^*}}} + \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qR* $ {q^{{{\rm{R}}^*}}} + \frac{{{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
MRCM $ {q^{{{\rm{M}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qM* $ {q^{{{\rm{M}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
MRCTM $ {q^{{{\rm{T}}^*}}} + \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qT* $ {q^{{{\rm{T}}^*}}} + \frac{{4{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
集中式 $ {q^{{{\rm{c}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ qc* $ {q^{{{\rm{c}}^*}}} + \frac{{2{C_{\rm{L}}}\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
回收率 MRCRM $ {\tau ^{{{\rm{R}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{2\left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ τR* $ {\tau ^{{{\rm{R}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{2\left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCM $ {\tau ^{{{\rm{M}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ τM* $ {\tau ^{{{\rm{M}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
MRCTM $ {\tau ^{{{\rm{T}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ τT* $ {\tau ^{{{\rm{T}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
集中式 $ {\tau ^{{{\rm{c}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $ τc* $ {\tau ^{{{\rm{c}}^*}}} + \frac{{\left( {\delta - A} \right)\left( {\Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}}{{4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} $
利润 MRCRM M $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{2\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {\phi - \beta {c_{\rm{m}}} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{2\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{2\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
R $ \frac{{{C_{\rm{L}}}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2}}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
S $ \frac{{{C_{\rm{L}}}\left[ {3{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 4\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {3\left( {\phi - \beta {c_{\rm{m}}}} \right) + 4\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left[ {3{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 4\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{4\beta \left[ {4{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
MRCM M $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {\phi - \beta {c_{\rm{m}}} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
R $ \frac{{4C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{4C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{4C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c - \beta {\lambda _2}} \right)}^2}}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $
S $ {C_{\rm{L}}}\left\{ \begin{array}{l} \frac{{{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}\left[ {12{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}}\\ \;\;\;\;\;\;\;\frac{{2{\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} \end{array} \right\} $ $ {C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left\{ \begin{array}{l} \frac{{\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {12{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}}\\ \;\;\;\;\; + \frac{{2\left( {\Delta \phi - \beta \Delta c} \right)}}{{\beta \left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} \end{array} \right\} $ $ {C_{\rm{L}}}\left\{ \begin{array}{l} \frac{{{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2}\left[ {12{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}}{{\beta {{\left[ {8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}}\\ \;\;\;\; + \frac{{2{\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{8{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}} \end{array} \right\} $
MRCTM M $ \frac{{2{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{2{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)\left[ {\phi - \beta {c_{\rm{m}}} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{2{C_{\rm{L}}}\left[ {{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right)} \right]}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
R $ \frac{{16C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{\beta {{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{16{C_{\rm{L}}}^2{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{\beta {{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{16C_{\rm{L}}^2{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c - \beta {\lambda _2}} \right)}^2}}}{{\beta {{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $
T $ \frac{{{C_{\rm{L}}}{{\left( {\delta - A} \right)}^2}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{{{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\delta - A} \right)}^2}{{\left( {\phi - \beta {c_{\rm{m}}}} \right)}^2}}}{{{{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $ $ \frac{{{C_{\rm{L}}}{{\left( {\delta - A} \right)}^2}{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c - \beta {\lambda _2}} \right)}^2}}}{{{{\left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}^2}}} $
$ \frac{{{C_{\rm{L}}}}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_{\rm{L}}}}}{{\beta \left[ {16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $
S $ \left\{ \begin{array}{l} \frac{{\left[ {48{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2}}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}}\\ \;\;\;\;\; - 4\beta {\lambda _1}\left( {\phi - \beta {c_{\rm{m}}}} \right) \end{array} \right\} $ $ \left\{ \begin{array}{l} \frac{{\left[ {48{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]\left( {\phi - \beta {c_{\rm{m}}}} \right)}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}}\\ \;\;\;\;\; + 4\left( {\Delta \phi - \beta \Delta c} \right) \end{array} \right\} $ $ \left\{ \begin{array}{l} \frac{{\left[ {48{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}} \right]{{\left( {\phi - \beta {c_{\rm{m}}} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2}}}{{16{C_{\rm{L}}} - \beta {{\left( {\delta - A} \right)}^2}}}\\ \;\;\;\;\; + 4\beta {\lambda _2}\left( {\phi - \beta {c_{\rm{m}}}} \right) \end{array} \right\} $
集中式 $ \frac{{{C_L}\left[ {{{\left( {\phi - \beta {c_m} + \Delta \phi - \beta \Delta c + \beta {\lambda _1}} \right)}^2} - 2\beta {\lambda _1}\left( {\phi - \beta {c_m}} \right)} \right]}}{{\beta \left[ {4{C_L} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_L}\left( {\phi - \beta {c_m}} \right)\left[ {\phi - \beta {c_m} + 2\left( {\Delta \phi - \beta \Delta c} \right)} \right]}}{{\beta \left[ {4{C_L} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $ $ \frac{{{C_L}\left[ {{{\left( {\phi - \beta {c_m} + \Delta \phi - \beta \Delta c + \beta {\lambda _2}} \right)}^2} - 2\beta {\lambda _2}\left( {\phi - \beta {c_m}} \right)} \right]}}{{\beta \left[ {4{C_L} - \beta {{\left( {\delta - A} \right)}^2}} \right]}} $

表4

3类回收渠道系统和集中式决策系统的应急均衡决策结果"

Δϕ-βΔc 回收模式 分散式决策 集中式决策
零售商 制造商 第三方 分散式总利润
${\bar p}$ ${\bar q}$ τ Πr ${\bar w}$ ${\bar b}$ Πm Πt Πd ${\bar p}$c ${\bar q}$c τc Πc
-20 MRCRM 6.748 5.036 0.072 5.036 5.000 1 1.259 6.295 6.496 10.072 0.144 2.518
MRCM 6.749 5.018 0.072 5.036 4.896 1.254 6.290
MRCTM 6.750 5.009 0.036 5.018 4.996 0.90 1.252 0.01 6.279
-7 MRCRM 7.639 8.309 0.119 13.710 5.900 1 18.608 32.318 6.078 16.619 0.237 37.216
MRCM 7.644 8.280 0.118 13.710 5.691 18.541 32.251
MRCTM 7.647 8.265 0.059 13.661 5.696 0.90 18.508 0.02 32.194
-5 MRCRM 7.837 8.813 0.126 15.423 6.194 1 22.032 37.455 6.075 17.626 0.252 44.065
MRCM 7.844 8.781 0.125 15.422 6.087 21.953 37.376
MRCTM 7.847 8.766 0.063 15.367 6.094 0.90 21.914 0.03 37.309
-2 MRCRM 8.037 8.813 0.126 15.423 6.300 1 27.320 42.743 6.275 17.626 0.252 54.640
MRCM 8.044 8.781 0.125 15.422 6.287 27.222 42.645
MRCTM 8.047 8.766 0.063 15.367 6.294 0.90 27.174 0.03 42.568
0 MRCRM 8.237 8.813 0.126 15.423 6.500 1 30.845 46.268 6.475 17.626 0.252 61.691
MRCM 8.244 8.781 0.125 15.422 6.487 30.735 46.157
MRCTM 8.247 8.766 0.063 15.367 6.494 0.90 30.680 0.03 46.075
2 MRCRM 8.437 8.813 0.126 15.423 6.700 1 34.371 49.793 6.675 17.626 0.252 68.741
MRCM 8.444 8.781 0.125 15.422 6.687 34.247 49.670
MRCTM 8.447 8.766 0.063 15, 367 6.694 0.90 34.186 0.03 49.581
5 MRCRM 8.837 8.813 0.126 15.423 7.100 1 39.658 55.081 7.075 17.626 0.252 79.317
MRCM 8.844 8.781 0.125 15.422 7.087 39.516 54.939
MRCTM 8.847 8.766 0.063 15, 367 7.094 0.90 39.445 0.03 54.840
20 MRCRM 9.727 12.590 0.180 31.475 8.000 1 71.763 103.240 6.453 25.180 0.360 143.520
MRCM 9.738 12.545 0.179 31.474 7.982 71.505 102.980
MRCTM 9.744 12.522 0.089 31.362 7.991 0.90 71.377 0.03 102.770
100 MRCRM 15.670 32.734 0.468 212.770 14.000 1 434.350 647.120 4.338 65.468 0.935 868.710
MRCM 15.710 32.616 0.466 212.760 13.950 432.790 645.560
MRCTM 15.730 32.558 0.233 212.980 13.980 0.90 432.020 0.04 644.410

表5

应急收益费用共享契约协调闭环供应链的结果"

Δϕ-βΔc θ范围 θ取值 w(θ) b(θ) $ \mathit{\overline \Pi} _{\rm{r}}^{\rm{d}} $ $ \mathit{\overline \Pi} _{\rm{m}}^{\rm{d}} $ $ \mathit{\overline \Pi} _{\rm{m}}^{\rm{d}} + \mathit{\overline \Pi} _{\rm{r}}^{\rm{d}} $
-7 (0.15, 0.5) 0.435 2.437 0.435 16.198 21.018 37.216
-5 (0.19, 0.5) 0.443 2.483 0.443 19.538 24.527 44.065
-2 (0.22, 0.5) 0.474 2.465 0.474 25.901 28.739 54.640
0 (0.25, 0.5) 0.282 1.409 0.282 17.381 44.310 61.691
2 (0.28, 0.5) 0.480 2.302 0.480 32.960 35.781 68.741
5 (0.35, 0.5) 0.369 1.698 0.369 29.272 50.045 79.317
20 (0.22, 0.5) 0.247 0.987 0.247 35.405 108.121 143.525
100 (0.25, 0.5) 0.491 0.982 0.491 426.572 442.133 868.705
1 SAVASKAN R C , BHATTACHARYA S , VAN WASSENHOVE L N . Closed-loop supply chain models with product remanufacturing[J]. Management Science, 2004, 50 (2): 239- 252.
doi: 10.1287/mnsc.1030.0186
2 SAVASKAN R C , VAN WASSENHOVE L N . Reverse channel design:the case of competing retailers[J]. Management Science, 2006, 52 (1): 1- 14.
3 ATASU A , TOKTAY L B , VAN WASSENHOVE L N . How collection cost structure drives a manufacturer's reverse channel choice[J]. Production and Operations Management, 2013, 22 (5): 1089- 1102.
4 舒秘, 聂佳佳. 产能约束对闭环供应链回收渠道选择的影响[J]. 运筹与管理, 2015, 24 (4): 52- 57.
SHU Mi , NIE Jiajia . Effect of capacity constraint on choice of collecting channels in closed-loop supply chain[J]. Operations Research and Management Science, 2015, 24 (4): 52- 57.
5 姚锋敏, 徐素波, 滕春贤. 双回收渠道下零售商主导闭环供应链决策模型[J]. 计算机集成制造系统, 2016, 22 (9): 2195- 2203.
YAO Fengmin , XU Subo , TENG Chunxian . Decision models for closed-loop supply chain with dominant retailer under dual recycle channels[J]. Computer Integrated Manufacturing Systems, 2016, 22 (9): 2195- 2203.
6 李晓静, 艾兴政, 唐小我. 竞争性供应链下再制造产品的回收渠道研究[J]. 管理工程学报, 2016, 30 (3): 90- 98.
LI Xiaojing , AI Xingzheng , TANG Xiaowo . Research on collecting strategies in the closed-loop supply chain with chain to chain competition[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30 (3): 90- 98.
7 LIU L W , WANG Z J , XU L , et al. Collection effort and reverse channel choices in a closed-loop supply chain[J]. Journal of Cleaner Production, 2017, 144: 492- 500.
doi: 10.1016/j.jclepro.2016.12.126
8 卢荣花, 李南. 零售商竞争环境下两周期闭环供应链回收渠道选择研究[J]. 系统管理学报, 2017, 26 (6): 1143- 1150.
LU Ronghua , LI Nan . Take-back channel selection of a two-period closed-loop supply chain in retailer competing settings[J]. Journal of Systems & Management, 2017, 26 (6): 1143- 1150.
9 周雄伟, 熊花纬, 陈晓红. 基于回收产品质量水平的闭环供应链渠道选择模型[J]. 控制与决策, 2017, 32 (2): 193- 202.
ZHOU Xiongwei , XIONG Huawei , CHEN Xiaohong . Reverse channel selection in closed-loop supply chain based on quality of recycled products[J]. Control and Decision, 2017, 32 (2): 193- 202.
10 WANG W B , ZHOU S Y , ZHANG M , et al. A closed-loop supply chain with competitive dual collection channel under asymmetric information and reward-penalty mechanism[J]. Sustainability, 2018, 10 (7): 2131.
doi: 10.3390/su10072131
11 路应金, 徐雪砜, 艾兴政. 第三方规模效应下闭环供应链双渠道回收决策研究[J]. 管理工程学报, 2018, 32 (2): 207- 217.
LU Yingjin , XU Xuefeng , AI Xingzheng . Research on double-channel recycling decision of closed-loop supply chain under third-party scale effect[J]. Journal of Industrial Engineering and Engineering Management, 2018, 32 (2): 207- 217.
12 QI X T , BARD J F , YU G . Supply chain coordination with demand disruptions[J]. Omega, 2004, 32 (4): 301- 312.
doi: 10.1016/j.omega.2003.12.002
13 XU X L , SHANG J , WANG H Y , et al. Optimal production and inventory decisions under demand and production disruptions[J]. International Journal of Production Research, 2016, 54 (1): 287- 301.
doi: 10.1080/00207543.2015.1073402
14 CAO E B , ZHOU X S , LŸ K . Coordinating a supply chain under demand and cost disruptions[J]. International Journal of Production Research, 2015, 53 (12): 3735- 3752.
doi: 10.1080/00207543.2014.988885
15 刘浪, 史文强, 冯良清. 多因素扰动情景下应急数量弹性契约的供应链协调[J]. 中国管理科学, 2016, 24 (7): 163- 176.
LIU Lang , SHI Wenqiang , FENG Liangqing . Supply chain coordination of emergency quantity elastic contract under multi-factor disturbance[J]. Chinese Journal of Management Science, 2016, 24 (7): 163- 176.
16 于艳娜, 姚锋敏, 滕春贤. 需求与成本同时扰动下的信息产品供应链定价决策[J]. 计算机集成制造系统, 2018, 24 (2): 516- 523.
YU Yanna , YAO Fengmin , TENG Chunxian . Pricing decision for information products supply chain under demand and cost disruption[J]. Computer Integrated Manufacturing Systems, 2018, 24 (2): 516- 523.
17 徐浩, 李佳川. 成本和需求扰动时双渠道供应链的协调机制研究[J]. 预测, 2014, 33 (4): 70- 75.
XU Hao , LI Jiachuan . Research on coordination mechaisms of dual-channel supply chains when cost and demand are disrupted[J]. Forecasting, 2014, 33 (4): 70- 75.
18 TANG C H , YANG H L , CAO E B , et al. Channel competition and coordination of a dual-channel supply chain with demand and cost disruptions[J]. Applied Economics, 2018, 50 (46): 4999- 5016.
doi: 10.1080/00036846.2018.1466989
19 ZHANG P , XIONG Y , XIONG Z K . Coordination of a dual-channel supply chain after demand or production cost disruptions[J]. International Journal of Production Research, 2015, 53 (10): 3141- 3160.
doi: 10.1080/00207543.2014.975853
20 SOLEIMANI F , ARSHADI KHAMSEH A , NADERI B . Optimal decisions in a dual-channel supply chain under simultaneous demand and production cost disruptions[J]. Annals of Operations Research, 2016, 243 (1/2): 301- 321.
21 吴晓志, 陈宏, 张俊. 需求和成本同时扰动下零售商双渠道供应链协调研究[J]. 系统管理学报, 2017, 26 (6): 154- 160, 170.
WU Xiaozhi , CHEN Hong , ZHANG Jun . Coordinating a retailer's dual-channel supply chain under demand and production cost disruptions[J]. Journal of Systems & Management, 2017, 26 (6): 154- 160, 170.
22 韩小花, 吴海燕, 杨倩霞. 成本与需求同时扰动下竞争型闭环供应链的生产与协调决策[J]. 系统管理学报, 2016, 25 (3): 546- 555.
HAN Xiaohua , WU Haiyan , YANG Qianxia . Production and coordination decisions in the competitive closed-loop supply chain with cost and demand perturbations[J]. Journal of Systems & Management, 2016, 25 (3): 546- 555.
23 HAN X H , WU H Y , YANG Q X , et al. Collection channel and production decisions in a closed-loop supply chain with remanufacturing cost disruption[J]. International Journal of Production Research, 2017, 55 (4): 1147- 1167.
doi: 10.1080/00207543.2016.1230684
24 WU H Y , HAN X H , YANG Q X . Production and coordination decisions in a closed-loop supply chain with remanufacturing cost disruptions when retailers compete[J]. Journal of Intelligent Manufacturing, 2018, 29 (1): 227- 235.
25 HUANG Y T , WANG Z J . Demand disruptions, pricing and production decisions in a closed-loop supply chain with technology licensing[J]. Journal of Cleaner Production, 2018, 191: 248- 260.
doi: 10.1016/j.jclepro.2018.04.221
26 CACHON G P . Supply chain coordination with contracts[J]. Handbooks in Operations Research & Management Science, 2003, 11 (11): 227- 339.
[1] 曲朋朋,周岩. 考虑制造商公平关切的闭环供应链网络均衡[J]. 《山东大学学报(理学版)》, 2020, 55(5): 114-126.
[2] 张克勇,李春霞,姚建明,李江鑫. 政府补贴下具风险规避的绿色供应链决策及协调[J]. 《山东大学学报(理学版)》, 2019, 54(11): 35-51.
[3] 周岩, 孙浩, 王晶晶, 韩瑞京, 蒋京龙. 基于随机需求和顾客满意度的多期闭环供应链网络均衡[J]. 山东大学学报(理学版), 2014, 49(07): 38-49.
[4] 王婷1,崔玉泉2,赵岗1. 随机需求下考虑退货机制的零售商竞争协调模型[J]. J4, 2013, 48(6): 34-37.
[5] 张克勇1,吴燕1,侯世旺2. 零售商公平关切下闭环供应链定价策略研究[J]. J4, 2013, 48(05): 83-91.
[6] 徐兵,熊勇. 需求依赖库存量的n-2型供应链网络决策模型研究[J]. J4, 2012, 47(12): 14-21.
[7] 汪传旭1,蒋良奎2. 模糊随机需求条件下供应链定期库存订货策略研究[J]. J4, 2011, 46(7): 48-55.
[8] 苑波, 汪传旭*. 随机需求条件下考虑延迟支付的第三方物流企业融资定价研究[J]. J4, 2010, 45(5): 58-63.
[9] 张克勇1,2,周国华1. 非对称信息下闭环供应链差别定价协调机制[J]. J4, 2009, 44(2): 60-64.
[10] 崔玉泉,王剑敏,戎晓霞 . 随机需求下两层供应链问题的模型探究[J]. J4, 2008, 43(10): 6-11 .
[11] 张立伟,张 玲 . 利用嵌套L—型分解算法求解生产计划多阶段随机规划模型[J]. J4, 2007, 42(4): 67-70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周伟娜,左连翠*. 几类图的笛卡尔积图的(d,1)-全标号[J]. 山东大学学报(理学版), 2014, 49(04): 24 -28 .
[2] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[3] 张雪凤1,刘鹏1,2. 基于类间差异最大化的加权距离改进K-means算法[J]. J4, 2010, 45(7): 28 -33 .
[4] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[5] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[6] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[7] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[8] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[9] 黄贤立,罗冬梅. 倾向性文本迁移学习中的特征重要性研究[J]. J4, 2010, 45(7): 13 -17 .
[10] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81 -85 .