您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (07): 38-49.doi: 10.6040/j.issn.1671-9352.0.2013.512

• 论文 • 上一篇    下一篇

基于随机需求和顾客满意度的多期闭环供应链网络均衡

周岩, 孙浩, 王晶晶, 韩瑞京, 蒋京龙   

  1. 青岛大学管理科学与工程系, 山东 青岛 266071
  • 收稿日期:2013-10-17 出版日期:2014-07-20 发布日期:2014-09-15
  • 作者简介:周岩(1979- ),女,副教授,博士,主要研究方向为物流与供应链管理. E-mail:yanyanz22@hotmail.com
  • 基金资助:
    国家自然科学基金资助项目(71202142);山东省自然科学基金资助项目(ZR2013GQ007);山东省高等学校科技计划项目(J12LN43)

Multi-period closed-loop supply chain network equilibrium under uncertainty and the resulting demand satisfaction

ZHOU Yan, SUN Hao, WANG Jing-jing, HAN Rui-jing, JIANG Jing-long   

  1. Department of Management Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2013-10-17 Online:2014-07-20 Published:2014-09-15

摘要: 研究了随机需求下由多个制造商、零售商、需求市场和回收中心组成的多期闭环供应链网络,其中网络各成员的产量、交易量、需求量和需求市场的价格随着时间周期动态地变化,由库存量的调整来延续网络各成员决策的发展。 在考虑随机需求和顾客满意度的基础上,分别构建了多期闭环供应链网络中各成员利润最大化的模型,利用均衡理论和变分不等式理论得到其均衡条件,最终得到整个多期闭环供应链网络均衡。 通过求解满足等式、不等式约束变分不等式的对数二次逼近预测校正法得到在一定顾客满意度基础上的网络中,各成员每个生产周期的均衡产量、交易量、库存量和需求市场的价格。 通过算例验证了模型及算法的有效性,并对顾客满意度灵敏度分析,得到其对网络各成员决策和利润的影响。

关键词: 闭环供应链网络, 多期, 变分不等式, Nash均衡

Abstract: This article was designed to develop an equilibrium model of a uncertain multi-period closed-loop supply chain network which was comprised by noncooperative manufacturers, retailers, demand markets and recovery centers. The decision-makers in the network had sufficient information about the future and sought to determine their optimal plans that maximize their profits over the multi-period planning horizon. With the help of equilibrium theory and variational inequality theory, the network structure of the multi-period closed-loop supply chain based on uncertainty and the resulting demand satisfaction was identified and the decision-makers’ equilibrium conditions were derived. An algorithm for solving the variational inequality was designed via logarithmic-quadratic proximal prediction-correction algorithm to compute the equilibrium solution. Finally, numerical examples are solved to test the efficiency of the model and the proposed algorithm for finding the above equilibrium, and sensitivity analysis are also be conducted to illustrate the effect of the resulting demand satisfaction on the decision-makers’ strategies, together with their respective profits.

Key words: variational inequality, closed-loop supply chain network, multi-period, Nash equilibrium

中图分类号: 

  • F274
[1] HAMMOND D, BEULLENS P. Closed-loop supply chain network equilibrium under legislation[J]. European Journal of Operational Research, 2007, 183:895-908.
[2] NAGURNEY A, DONG June, ZHANG Ding. A supply chain network equilibrium model[J]. Transportation Research E, 2002, 38(5):281-303.
[3] YANG Guangfen, WANG Zhiping, LI Xiaoqiang. The optimization of the closed-loop supply chain network[J]. Transportation Research E, 2009, 45(1):16-28.
[4] QIANG Qiang, KE Ke, ANDERSON T, et al. The closed-loop supply chain network with competition, distribution channel investment, and uncertainties[J]. Omega, 2013, 41(2):186-194.
[5] DONG June, ZHANG Ding, NAGURNEY A. A supply chain network equilibrium model with random demand[J]. European Journal of Operational Research, 2004, 156(1):194-212.
[6] 刘诚, 李伟, 瞿攀. 随机需求条件下闭环供应链网络均衡[J]. 系统工程, 2008, 26(8):11-16. LIU Cheng, LI Wei, ZHAI Pan. Closed-loop supply chain network equilibrium under stochastic demand[J]. Systems Engineering, 2008, 26(8):11-16.
[7] 王文宾, 达庆利, 胡天兵,等. 基于惩罚与补贴的再制造闭环供应链网络均衡模型[J]. 运筹与管理, 2010, 19(1):65-72. WANG Wenbin, DA Qingli, HU Tianbing, et al. Remanufacturing closed-loop supply chain network equilibrium model based on allowance and penalty[J]. Operations Research and Management Science, 2010, 19(1):65-72.
[8] 杨玉香, 周根贵. 基于税收政策的闭环供应链网络均衡模型研究[J]. 浙江工业大学学报, 2011, 39(2):187-191. YANG Yuxiang, ZHOU Gengui. Study on network equilibrium model of closed loop supply chain based on the tax policy[J]. Journal of Zhejiang University of Technology, 2011, 39(2):187-191.
[9] 周岩, 胡劲松, 赵海瑞. 具有产能和价格干预的闭环供应链网络双渠道均衡[J]. 系统科学与数学, 2012, 32(9):1072-1091. ZHOU Yan, HU Jinsong, ZHAO Hairui. Closed loop supply chain network dual channel equilibrium model with production capacity constraints and price rigidities[J]. Journal of System Science and Mathematical Science, 2012, 32(9):1072-1091.
[10] HAMDOUCH Y. Multi period supply chain network equilibrium with capacity constraints and purchasing strategies[J]. Transportation Research C, 2011, 19:803-820.
[11] CRUZ J M, LIU Zugang. Modeling and analysis of the multiperiod effects of social relationship on supply chain networks[J]. European Journal of Operational Research, 2011, 214:39-52.
[12] LIU Zugang, NAGURNEY A. Multiperiod competitive supply chain networks with inventorying and a transportation network equilibrium reformulation[J]. Optimization and Engineering, 2012, 13(2):471-503.
[13] 张铁柱, 周倩. 双渠道多期供应链网络均衡模型研究[J].计算机集成制造系统, 2008, 14(8):1512-1520. ZHANG Tiezhu, ZHOU Qian. Multi-period supply chain network equilibrium model with two-channel[J]. Computer Integrated Manufacturing System, 2008, 14(8):1512-1520.
[14] 徐士琴, 金晋, 魏子秋,等. 双渠道双目标的多期供应链网络均衡问题研究[J]. 数学的实践与认识, 2013, 43(16):66-78. XU Shiqin, JIN Jin, WEI Ziqiu, et al. Research on multi-period supply chain network equalibrium problem based on dual-channel and dual-criteria[J]. Mathematics in Practice and Theory, 2013, 43(16):66-78.
[15] HE Bingsheng, XU Yan, YUAN Xiaoming. A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities[J]. Computational Optimization and Applications, 2006, 35:19-46.
[16] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Matecon, 1976, 12:747-756.
[1] 杨延涛. 求解单调变分不等式问题的一种修正的次梯度超梯度方法[J]. 山东大学学报(理学版), 2018, 53(2): 38-45.
[2] 段丁钰,周岩,张华民,徐明姣. 考虑零售商不公平厌恶行为的供应链网络均衡研究[J]. 山东大学学报(理学版), 2017, 52(5): 58-69.
[3] 陈霞,陈纯荣. 广义向量变分不等式的间隙函数与误差界[J]. 山东大学学报(理学版), 2017, 52(4): 1-5.
[4] . 求解变分不等式的修正三步迭代法[J]. J4, 2009, 44(6): 69-74.
[5] . 求解交叉规划模型的一类联合均衡方法[J]. J4, 2009, 44(6): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!