山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 1-5.doi: 10.6040/j.issn.1671-9352.0.2016.469
• • 下一篇
陈霞,陈纯荣*
CHEN Xia, CHEN Chun-rong*
摘要: 利用线性标量化方法构造广义向量变分不等式的间隙函数,并利用广义f-投影算子的性质验证了正则间隙函数。在广义强伪单调的条件下得到了误差界结论。
中图分类号:
[1] LI X, LI X S, HUANG N J. A generalized f-projection algorithm for inverse mixed variational inequalities[J]. Optimization Letters, 2014, 8(3):1063-1076. [2] SUN X K, CHAI Y. Gap functions and error bounds for generalized vector variational inequalities[J]. Optimization Letters, 2014, 8(5):1663-1673. [3] ZUO X, WEI H Z, CHEN C R. Continuity results and error bounds on pseudomonotone vector variational inequalities via scalarization[J]. Journal of Function Spaces, 2016(3):1-11. [4] CHARITHA C, DUTTA J. Regularized gap functions and error bounds for vector variational inequalities[J]. Pacific Journal of Optimization, 2010, 6(3):497-510. [5] SOLODOV M V. Merit functions and error bounds for generalized variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2003, 287(2):405-414. [6] LI C Q, LI J. Merit functions and error bounds for constrained mixed set-valued variational inequalities via generalized f-projection operators[J]. Optimization, 2016, 65(8):1569-1584. [7] LI X B, ZHOU L W, HUANG N J. Gap functions and global error bounds for generalized mixed variational inequalities on hadamard mainifolds[J]. Journal of Optimization Theory and Applications, 2016, 168(3):830-849. [8] NOOR M A. Merit functions for general variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2006, 316(2):736-752. [9] LEE G M, KIM D S, LEE B S, et al. Vector variational inequality as a tool for studying vector optimization problems[J]. Nonlinear Analysis, 1998, 34:745-765. |
[1] | 田晓欢,陈纯荣. Ky Fan拟不等式的间隙函数和误差界[J]. 山东大学学报(理学版), 2016, 51(11): 123-126. |
|