《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (7): 55-66.doi: 10.6040/j.issn.1671-9352.0.2019.318
• • 上一篇
刘静姝1,王莉1*,刘惊雷2
LIU Jing-shu1, WANG Li1*, LIU Jing-lei2
摘要: 不同于采样矩阵近似方法,设计了一种基于随机循环矩阵投影来实现矩阵的近似。首先,利用随机采样得到一个初始矩阵的近似轮廓,然后构造循环嵌入矩阵,将该循环矩阵作为投影矩阵,从而将输入数据空间的初始轮廓嵌入到一个低维的特征子空间上,最后在特征子空间上进行奇异值分解,从而扩展了传统的Nyström方法。与其他典型的矩阵近似方法相比,所设计的Nyström方法具有时间复杂度低、重构精度高的优点。最后通过实验证实了所设计的循环矩阵投影方法的有效性,可以实现对传统Nyström方法的有效扩展。
中图分类号:
[1] CAO L. Data science: a comprehensive overview[J]. ACM Computing Surveys, 2017, 50(3):43:1-43:42. [2] SHEN Y, CHEN T, GIANNAKIS G B. Random feature-based online multi-kernel learning in environments with unknown dynamics[J]. Journal of Machine Learning Research, 2019, 20(22):1-36. [3] HUANG P S, AVRON H, SAINATH T N, et al. Kernel methods match deep neural networks on timit[C] //Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Italy: IEEE Signal Processing Society, 2014: 205-209. [4] SCHOLKOPF B, SMOLA A J. Learning with kernels[J]. IEEE Transactions on Signal Processing, 2004, 52(8):2165-2176. [5] MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels[C] //Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop. Nevada: IEEE, 1999: 41-48. [6] SCHOLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319. [7] WANG L, REGE M, DONG M, et al. Low-rank kernel matrix factorization for large scale evolutionary clustering[J]. IEEE Transactions on Knowledge & Data Engineering, 2012, 24(6):1036-1050. [8] YANG T, LI Y, MAHDAVI M, et al. Nyström method vs random fourier features: a theoretical and empirical comparison[C] //International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 2012: 476-484. [9] LAN L, ZHANG K, GE H, et al. Low-rank decomposition meets kernel learning: a generalized Nyström method[J]. Artificial Intelligence, 2017, 250:1-15. [10] KAI Z, KWOK J T. Clustered Nyström method for large scale manifold learning and dimension reduction[J]. IEEE Transactions on Neural Networks, 2010, 21(10):1576-1587. [11] ZHANG X, ZONG L, YOU Q, et al. Sampling for Nyström extension-based spectral clustering: incremental perspective and novel analysis[J]. ACM Transactions on Knowledge Discovery from Data, 2016, 11(1):7:1-7:25. [12] KOPPEL A, WARNELL G, STUMP E, et al. Parsimonious online learning with kernels via sparse projections in function space[J]. Journal of Machine Learning Research, 2019, 20(3):1-44. [13] ZHANG X, SUN H, LIU Z, et al. Robust low-rank kernel multi-view subspace clustering based on the schatten p-norm and correntropy[J]. Information Sciences, 2019, 4779(6):430-447. [14] LAST M. Kernel methods for pattern analysis[M]. Cambridge: Cambridge University Press, 2006: 1730-1730. [15] FOWLKES C, BELONGIE S, FAN C, et al. Spectral grouping using the Nyström method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):214-225. [16] WILLIAMS C K I, SEEGER M. Using the Nyström method to speed up kernel machines[C] //Advances in Neural Information Processing Systems 13(NIPS 2000). Breckenridge: MIT Press, 2001: 682-688. [17] TALWALKAR A, KUMAR S, ROWLEY H A. Large-scale manifold learning[J]. CVPR, 2008, 6(1):1-30. [18] PLATT J C. Fastmap, metricmap, and landmark mds are all Nyström algorithms[C] //Proceedings of 10th International Workshop on Artificial Intelligence and Statistics. Barbados: Society for Artificial Intelligence and Statistics, 2005: 261-268. [19] SINHA K, BELKIN M. Semi-supervised learning using sparse eigenfunction bases[C] //Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Vancouver: Curran Associates, Inc, 2009: 1687-1695. [20] KUMAR S, MOHRI M, TALWALKAR A. Ensemble Nyström method[C] //International Conference on Neural Information Processing Systems. Vancouver: Curran Associates, Inc, 2009: 1060-1068. [21] RASHMI M, SANKARAN P. Optimal landmark point selection using clustering for manifold modeling and data classification[J]. Journal of Classification, 2019, 36(1):1-19. [22] SINHA A, DUCHI J C. Learning kernels with random features[C] //Proceedings of the Advances in Neural Information Processing Systems. Barcelona: Curran Associates, Inc, 2016: 1298-1306. [23] WANG S, DANG L, QIAN G, et al. Kernel recursive maximum correntropy with Nyström approximation[J]. Neurocomputing, 2019, 329(1):424-432. [24] HENSMAN J, DURRANDE N, SOLIN A. Variational Fourier features for Gaussian processes[J]. Journal of Machine Learning Research, 2018, 18(151):1-52. [25] HATAMIRAD S, PEDRAM M M. Low-rank approximation of large-scale matrices via randomized methods[J]. Journal of Supercomputing, 2018, 74(2):830-844. [26] LI H, NILANJAN R, GUAN Y, et al. Fast large-scale spectral clustering via explicit feature mapping[J]. IEEE Transactions on Cybernetics, 2019, 49(3):1058-1071. [27] SUN S, ZHAO J, ZHU J. A review of Nyström methods for large-scale machine learning[J]. Information Fusion, 2015, 26:36-48. [28] LI M, KWOK J T, LU B L. Making large-scale Nyström approximation possible[C] //International Conference on Machine Learning. Israel: Omnipress, 2010: 631-638. [29] SHABAT G, SHMUELI Y, AIZENBUD Y, et al. Randomized LU decomposition[J]. Applied and Computational Harmonic Analysis, 2018, 44(2):246-272. [30] WANG L, LI M, JI H, et al. When collaborative representation meets subspace projection: a novel supervised framework of graph construction augmented by anti-collaborative representation[J]. Neurocomputing, 2019, 328(1):157-170. [31] BOUTSIDIS C, ZOUZIAS A, MAHONEY M W, et al. Randomized dimensionality reduction for K-means clustering[J]. IEEE Transactions on Information Theory, 2015, 61(2):1045-1062. [32] LI M, BI W, KWOK J T, et al. Large-scale Nyström kernel matrix approximation using randomized SVD[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(1):152-164. [33] WOODRUFF D P. Sketching as a tool for numerical linear algebra[J]. Foundations and Trends in Theoretical Computer Science, 2013, 10(1):1-157. [34] JOHNSON W B, LINDENSTRAUSS J, SCHECHTMAN G. Extensions of lipschitz maps into banach spaces[J]. Israel Journal of Mathematics, 1986, 54(2):129-138. [35] YU F X, BHASKARA A, KUMAR S, et al. On binary embedding using circulant matrices[J]. Journal of Machine Learning Research, 2018, 18(150):1-30. [36] LEWIS D D, YANG Y, ROSE T G, et al. Rcv1: a new benchmark collection for text categorization research[J]. Journal of Machine Learning Research, 2004, 5(2):361-397. [37] LUCAS S, VIDAL E, AMIRI A, et al. A comparison of syntactic and statistical techniques for off-line OCR[C] //Grammatical Inference and Applications. Berlin: Springer Berlin Heidelberg, 1994: 168-179. |
[1] | 李静,何承源. 求解首尾差循环矩阵逆与广义逆的快速算法[J]. J4, 2013, 48(6): 96-99. |
|