《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (7): 46-54.doi: 10.6040/j.issn.1671-9352.0.2019.532
• • 上一篇
彭家寅
PENG Jia-yin
摘要: 为了解决多量子态的制备问题,首先提出一种构造2n+1-量子纠缠态的方法,并给出其量子线路图。其次,采用2n+1-量子纠缠态为信道,出来远程制备一个任意n-量子赤道纠缠态的方案。该方案在控制者Charlie的协助下,Alice通过多量子投影测量和经典通信,Bob采用简单酉变换就能以100%的概率成功重构任意n-量子赤道态。进一步,通过任意二量子态和任意三量子态的制备的具体实例,说明了上述关于一般多量子赤道纠缠态远程制备协议是可行的。
中图分类号:
[1] BENNETT C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(21):3121-3124. [2] DZURNAK B, STEVENSON R M, NILSSON J, et al. Quantum key distribution with an entangled light emitting diode[J]. Applied Physics Letters, 2015, 107(26):261101. [3] KOGIAS I, XIANG Y, HE Q, et al. Unconditional security of entanglement-based continuous-variable quantum secret sharing[J]. Phys Rev A, Gen Phys, 2017, 95(1):012315. [4] PENG Jiayin, MO Zhiwen. Quantum sharing an unknown multi-particle state via POVM[J]. International Journal of Theoretical Physics, 2013, 52(2):620-633. [5] ZHOU Nanrun, ZENG Guihua, ZENG Wenjie, et al. Cross-center quantum identification scheme based on teleportation and entanglement swapping[J]. Optics Communications, 2005, 254(4/5/6):380-388. [6] LIANG Jianwu, LIU Xiaoshu, SHI Jinjing, et al. Multiparty quantum blind signature scheme based on graph states[J]. International Journal of Theoretical Physics, 2018, 57(5):2404-2414. [7] HUELGA S F, VACCARO J A, CHEFLES A, et al. Quantum remote control: teleportation of unitary operations[J]. Physical Review A, 2001, 63(4):042303. [8] LO H K. Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity[J]. Physical Review A, 2000, 62(1):012313. [9] YE M Y, ZHANG Y S, GUO G C. Faithful remote state preparation using finite classical bits and a non-maximally entangled state[J]. Physical Review A, 2004, 69:022310. [10] PETERS N A, BARREIRO J T, GOGGIN M E, et al. Remote state preparation: arbitrary remote control of photon polarization[J]. Physical Review Letters, 2005, 94(15):150502. [11] WU Wei, LIU Weitao, CHEN Pingxing, et al. Deterministic remote preparation of pure and mixed polarization states[J]. Physical Review A, 2010, 81(4):077902. [12] WEI Jiahua, SHI Lei, ZHU Yu, et al. Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states[J]. Quantum Information Processing, 2018, 17(3):70. [13] LEUNG D W, SHOR P W. Oblivious remote state preparation[J]. Physical Review Letters, 2003, 90(12):127905. [14] ZENG Bei, ZHANG Peng. Remote-state preparation in higher dimension and the parallelizable manifold sn-1[J]. Physical Review A, 2001, 65(2):130-132. [15] BERRY D W, SANDERS B C. Optimal remote state preparation[J]. Physical Review Letters, 2003, 90(5):057901. [16] DEVETAK I, BERGER T. Low-entanglement remote state preparation[J]. Physical Review Letters, 2001, 87(19):197901. [17] KURUCZ Z, ADAM P, KIS Z, et al. Continuous variable remote state preparation[J]. Physical Review A, 2005, 72(5):052315. [18] LUO Mingxing, CHEN Xiubo, MA Songya, et al. Remote preparation of an arbitrary two-qubit state with three-party[J]. International Journal of Theoretical Physics, 2010, 49(6):1262-1273. [19] LIU Linlin, HWANG Tzonelih. Controlled remote state preparation protocols via AKLT states[J]. Quantum Information Processing, 2014, 13(7):1639-1650. [20] CAO T B, NGUYEN B A. Deterministic controlled bidirectional remote state preparation[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 5(1):015003. [21] PENG Jiayin, BAI Mingqiang, MO Zhiwen. Bidirectional controlled joint remote state preparation[J]. Quantum Information Processing, 2015, 14(11):4263-4278. [22] SHARMA V, SHUKLA C, BANERJEE S, et al. Controlled bidirectional remote state preparation in noisy environment: a generalized view[J]. Quantum Information Processing, 2015, 14(9):3441-3464. [23] WANG Dong, YE Liu. Multiparty-controlled joint remote state preparation[J]. Quantum Information Processing, 2013, 12(10):3223-3237. [24] WANG M M, YANG C, MOUSOLI R. Controlled cyclic remote state preparation of arbitrary qubit states[J]. Computers, Materials & Continua, 2018, 55(2):321-329. [25] ZHA Xinwei, YU Xiaoyuan, CAO Yong. Tripartite controlled remote state preparation via a seven-qubit entangled state and three auxiliary particles[J]. International Journal of Theoretical Physics, 2019, 58:282-293. [26] SANG Zhiwen. Cyclic controlled joint remote state preparation by using a ten-qubit entangled states[J]. International Journal of Theoretical Physics, 2019, 58:255-260. [27] 彭家寅. 任意二粒子态的受控双向远程态制备[J]. 内江师范学院学报,2019,34(6):29-35. PENG Jiayin. Controlled bidirectional remote preparation of arbitrary two-particle states[J]. Journal of Neijiang Normal University, 2019, 34(6):29-35. [28] WEI Jiahua, SHI Lei, MA Lihua, et al. Remote preparation of an arbitrary mult-qubit state via two-qubit entangled states[J]. Quantum Information Processing, 2017, 16(10):260. [29] BRUB D, CINCHETTI M, DARIANO G M, et al. Phase-covariant quantum cloning[J]. Physical Review A, 2000, 62(1):012302. [30] KANG Peng, DAI Hongyi, WEI Jiahua, et al. Optimal quantum cloning based on the maximin principle by using a priori information[J]. Physical Review A, 2016, 94(4):042304. |
[1] | 彭家寅. 以十量子纠缠态为信道的循环受控量子隐形传态[J]. 《山东大学学报(理学版)》, 2019, 54(9): 98-104. |
[2] | 彭家寅. 以真五粒子非最大纠缠态为信道的双向受控隐形传态[J]. 《山东大学学报(理学版)》, 2018, 53(12): 105-113. |
|