您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (7): 46-54.doi: 10.6040/j.issn.1671-9352.0.2019.532

• • 上一篇    

n-粒子赤道态的受控远程制备

彭家寅   

  1. 内江师范学院数学与信息科学学院, 四川 内江 641100
  • 发布日期:2020-07-08
  • 作者简介:彭家寅(1962— ),男,博士,教授,研究方向为量子通信. E-mail:pengjiayin62226@163.com
  • 基金资助:
    国家自然科学基金资助项目(11671284);四川省教育厅科研创新团队基金资助项目(15TD002)

Controlled remote preparation of n-qubit equatorial states

PENG Jia-yin   

  1. School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, Sichuan, China
  • Published:2020-07-08

摘要: 为了解决多量子态的制备问题,首先提出一种构造2n+1-量子纠缠态的方法,并给出其量子线路图其次,采用2n+1-量子纠缠态为信道,出来远程制备一个任意n-量子赤道纠缠态的方案。该方案在控制者Charlie的协助下,Alice通过多量子投影测量和经典通信,Bob采用简单酉变换就能以100%的概率成功重构任意n-量子赤道态。进一步,通过任意二量子态和任意三量子态的制备的具体实例,说明了上述关于一般多量子赤道纠缠态远程制备协议是可行的。

关键词: 量子通信, 受控远程态制备, 多量子纠缠信道, 任意赤道态

Abstract: In order to solve the problem of preparing multi-particle states, a method of constructing 2n+1-qubit entangled quantum states is proposed, and its quantum circuit diagram is given. Secondly, a controlled remote preparation protocol for an arbitrary n-qubit equatorial entangled state is proposed by using this 2n+1-qubit entangled states as quantum channel. The protocol shows that under the control of the supervisor Charlie, and Alice uses multi-qubut projection measurement and classical communication, Bob can successfully reconstruct an arbitrary n-qubit equatorial state with 100% probability by using a simple unitary transformation. Furthermore, the feasibility of this protocol for remote preparation of the general multi-qubit equatorial entangled state is explicitly demonstrated by concrete examples of the preparation of arbitrary two-qubit state and arbitrary three-qubit state.

Key words: quantum communication, controlled remote state preparation, multi-qubit entanglement channel, arbitrary equatorial state

中图分类号: 

  • O431.2
[1] BENNETT C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(21):3121-3124.
[2] DZURNAK B, STEVENSON R M, NILSSON J, et al. Quantum key distribution with an entangled light emitting diode[J]. Applied Physics Letters, 2015, 107(26):261101.
[3] KOGIAS I, XIANG Y, HE Q, et al. Unconditional security of entanglement-based continuous-variable quantum secret sharing[J]. Phys Rev A, Gen Phys, 2017, 95(1):012315.
[4] PENG Jiayin, MO Zhiwen. Quantum sharing an unknown multi-particle state via POVM[J]. International Journal of Theoretical Physics, 2013, 52(2):620-633.
[5] ZHOU Nanrun, ZENG Guihua, ZENG Wenjie, et al. Cross-center quantum identification scheme based on teleportation and entanglement swapping[J]. Optics Communications, 2005, 254(4/5/6):380-388.
[6] LIANG Jianwu, LIU Xiaoshu, SHI Jinjing, et al. Multiparty quantum blind signature scheme based on graph states[J]. International Journal of Theoretical Physics, 2018, 57(5):2404-2414.
[7] HUELGA S F, VACCARO J A, CHEFLES A, et al. Quantum remote control: teleportation of unitary operations[J]. Physical Review A, 2001, 63(4):042303.
[8] LO H K. Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity[J]. Physical Review A, 2000, 62(1):012313.
[9] YE M Y, ZHANG Y S, GUO G C. Faithful remote state preparation using finite classical bits and a non-maximally entangled state[J]. Physical Review A, 2004, 69:022310.
[10] PETERS N A, BARREIRO J T, GOGGIN M E, et al. Remote state preparation: arbitrary remote control of photon polarization[J]. Physical Review Letters, 2005, 94(15):150502.
[11] WU Wei, LIU Weitao, CHEN Pingxing, et al. Deterministic remote preparation of pure and mixed polarization states[J]. Physical Review A, 2010, 81(4):077902.
[12] WEI Jiahua, SHI Lei, ZHU Yu, et al. Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states[J]. Quantum Information Processing, 2018, 17(3):70.
[13] LEUNG D W, SHOR P W. Oblivious remote state preparation[J]. Physical Review Letters, 2003, 90(12):127905.
[14] ZENG Bei, ZHANG Peng. Remote-state preparation in higher dimension and the parallelizable manifold sn-1[J]. Physical Review A, 2001, 65(2):130-132.
[15] BERRY D W, SANDERS B C. Optimal remote state preparation[J]. Physical Review Letters, 2003, 90(5):057901.
[16] DEVETAK I, BERGER T. Low-entanglement remote state preparation[J]. Physical Review Letters, 2001, 87(19):197901.
[17] KURUCZ Z, ADAM P, KIS Z, et al. Continuous variable remote state preparation[J]. Physical Review A, 2005, 72(5):052315.
[18] LUO Mingxing, CHEN Xiubo, MA Songya, et al. Remote preparation of an arbitrary two-qubit state with three-party[J]. International Journal of Theoretical Physics, 2010, 49(6):1262-1273.
[19] LIU Linlin, HWANG Tzonelih. Controlled remote state preparation protocols via AKLT states[J]. Quantum Information Processing, 2014, 13(7):1639-1650.
[20] CAO T B, NGUYEN B A. Deterministic controlled bidirectional remote state preparation[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 5(1):015003.
[21] PENG Jiayin, BAI Mingqiang, MO Zhiwen. Bidirectional controlled joint remote state preparation[J]. Quantum Information Processing, 2015, 14(11):4263-4278.
[22] SHARMA V, SHUKLA C, BANERJEE S, et al. Controlled bidirectional remote state preparation in noisy environment: a generalized view[J]. Quantum Information Processing, 2015, 14(9):3441-3464.
[23] WANG Dong, YE Liu. Multiparty-controlled joint remote state preparation[J]. Quantum Information Processing, 2013, 12(10):3223-3237.
[24] WANG M M, YANG C, MOUSOLI R. Controlled cyclic remote state preparation of arbitrary qubit states[J]. Computers, Materials & Continua, 2018, 55(2):321-329.
[25] ZHA Xinwei, YU Xiaoyuan, CAO Yong. Tripartite controlled remote state preparation via a seven-qubit entangled state and three auxiliary particles[J]. International Journal of Theoretical Physics, 2019, 58:282-293.
[26] SANG Zhiwen. Cyclic controlled joint remote state preparation by using a ten-qubit entangled states[J]. International Journal of Theoretical Physics, 2019, 58:255-260.
[27] 彭家寅. 任意二粒子态的受控双向远程态制备[J]. 内江师范学院学报,2019,34(6):29-35. PENG Jiayin. Controlled bidirectional remote preparation of arbitrary two-particle states[J]. Journal of Neijiang Normal University, 2019, 34(6):29-35.
[28] WEI Jiahua, SHI Lei, MA Lihua, et al. Remote preparation of an arbitrary mult-qubit state via two-qubit entangled states[J]. Quantum Information Processing, 2017, 16(10):260.
[29] BRUB D, CINCHETTI M, DARIANO G M, et al. Phase-covariant quantum cloning[J]. Physical Review A, 2000, 62(1):012302.
[30] KANG Peng, DAI Hongyi, WEI Jiahua, et al. Optimal quantum cloning based on the maximin principle by using a priori information[J]. Physical Review A, 2016, 94(4):042304.
[1] 彭家寅. 以十量子纠缠态为信道的循环受控量子隐形传态[J]. 《山东大学学报(理学版)》, 2019, 54(9): 98-104.
[2] 彭家寅. 以真五粒子非最大纠缠态为信道的双向受控隐形传态[J]. 《山东大学学报(理学版)》, 2018, 53(12): 105-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!