您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 105-113.doi: 10.6040/j.issn.1671-9352.0.2017.143

• • 上一篇    下一篇

以真五粒子非最大纠缠态为信道的双向受控隐形传态

彭家寅   

  1. 内江师范学院数学与信息科学学院, 四川 内江 641199
  • 出版日期:2018-12-20 发布日期:2018-12-18
  • 作者简介:彭家寅(1962— ),男,博士,教授,研究方向为量子通信. E-mail:pengjiayin62226@163.com
  • 基金资助:
    教育部与四川省数学与应用数学专业综合改革资助项目(ZG0464和01249);国家自然科学基金资助项目(11071178、11671284);四川科技厅重大前沿资助项目(2017JY0197);四川省教育厅科研创新团队基金资助项目(15TD0027)

Bidirectional controlled teleportation with a genuine five-qubit non-maximally entangled state as quantum channel

PENG Jia-yin   

  1. School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641199, Sichuan, China
  • Online:2018-12-20 Published:2018-12-18

摘要: 利用投影测量和正算子值测量,分别提出了以真五粒子非最大纠缠态为信道的双向受控隐形传态的两个协议。协议中,作为量子信道的真五粒子非最大纠缠态连接3个合法的参与者;在监督者Charlie的控制下,Alice以一定概率将任意未知单粒子A的态传给Bob,同时Bob也以一定概率将任意未知单粒子B的态传给Alice。这两个协议都是确定性双向隐形传态的推广。

关键词: 量子通信, 双向受控隐形传态, 真五粒子非最大纠缠态, 投影测量, 正算子值测量

Abstract: By using projective measurement and positive operator-valued measurement, two bidirectional controlled teleportation schemes via a genuine five-qubit non-maximally entangled state are proposed, respectively. In our scheme, such a five-qubit non-maximally state is employed as the quantum channel linking three legitimate participants. And with certain probability, Alice many transmit an arbitrary unknown single-qubit state of qubit A to Bob and Bob many transmit an arbitrary single-qubit state of qubit B to Alice via the control of the supervisor Charlie. Our protocols are the generalization of deterministic bidirectional controlled teleportation.

Key words: quantum communication, bidirectional controlled teleportation, genuine five-qubit non-maximally entangled state, projective measurement, positive operator-valued measurement

中图分类号: 

  • TP301
[1] BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown suantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13):1895.
[2] GORBACHEV V N, TRUBILKO A I, RODICHKINA A A, et al. Can the states of the W-class be suitable for teleportation?[J]. Physics Letters A, 2003, 314(4):267-271.
[3] DENG Fuguo, LI Chunyan, LI Yansong, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement[J]. Physical Review A, 2005, 72(2):656-665.
[4] PENG Jiayin, LUO Mingxing, MO Zhiwen. Quantum tasks with non-maximally quantum channels via positive operator-valued measurement[J]. International Journal of Theoretical Physics, 2013, 52(1): 253-265.
[5] PENG Jiayin, MO Zhiwen. Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels[J]. Chinese Physics B, 2013,22(5):160-167.
[6] WANG T J, ZHOU H Y, DENG F G. Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements[J]. Physica A Statistical Mechanics & its Applications, 2008, 387(18):4716-4722.
[7] PENG Jiayin, BAI Mingqiang, MO Zhiwen. Hierarchical and probabilistic quantum state sharing via a non-maximally entangled |χ〉 state[J]. Chinese Physics B, 2014, 23(1): 010304(1-6).
[8] PENG Jiayin, MO Zhiwen. Quantum sharing an unknown multi-particle state via POVM[J]. International Journal of Theoretical Physics, 2013, 52(2):620-633.
[9] MURALIDHARAN S, JAIN S, PANIGRAHI P K. Splitting of quantum information using N-qubit linear cluster states[J]. Optics Communications, 2010, 284(4):1082-1085.
[10] JI Qibin, LIU Yimin, XIE Chuanmei, et al. Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures[J]. Quantum Information Processing, 2014, 13(8):1659-1676.
[11] BENNET C H, WIESNER S J. Quantum key distribution using non-orthogonal macroscopic signals: US, US 5515438 A[P]. 1996.
[12] EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6):661-663.
[13] BENNET C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(68):3121-3124.
[14] CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 1996, 78(16):3221-3224.
[15] LUO Mingxing, DENG Yun, CHEN Xiubo, et al. Faithful quantum broadcast beyond the no-go theorem[J]. Quantum Information Processing, 2013, 12(5):1969-1979.
[16] LI Yuanhua, JIN Xianmin. Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments[J]. Quantum Information Processing, 2015, 15(2):1-17.
[17] ZHANG Z, LIU Y, WANG D. Perfect teleportation of arbitrary n-qudit states using different quantum channels[J]. Physics Letters A, 2007, 372(1):28-32.
[18] LEE J, MIN H, OH S D. Multipartite entanglement for entanglement teleportation[J]. Physical Review A, 2002, 66(5):357-364.
[19] JIANG Min, LI Hui, ZHANG Zengke, et al. Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels[J]. Physica A Statistical Mechanics & its Applications, 2011, 390(4):760-768.
[20] DAI Hongyi, MING Z, LI C Z. Probabilistic teleportation of an unknown entangled state of two three-level particles using a partially entangled state of three three-level particles[J]. Physics Letters A, 2004, 323(5/6):360-364.
[21] ZHANG Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message[J]. Physics Letters A, 2006, 352(1/2):55-58.
[22] HOU Kui, LI Yibao, SHI Shouhua. Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements[J]. Optics Communications, 2010, 283(9):1961-1965.
[23] 周润南,宋汉冲,龚黎华,等.基于GHZ态的三方量子确定性密钥分配协议[J]. 物理学报,2012,61(21):214203(1-7). ZHOU Runnan, SONG Hanchong, GONG Lihua, et al. Quantum deterministic key distribution protocol based on GHZ states entanglement swapping[J]. Acta Phys Sin, 2012,61(21):214203(1-7).
[24] NIE Yiyou, SANG Minghuang, LI Yuanhua. Three-party quantum information splitting of an arbitrary two-qubit state by using six-qubit cluster state[J]. International Journal of Theoretical Physics, 2011, 50(5):1367-1371.
[25] LI Yuanhua, LI Xiaolan, SANG Minghuang, et al. Splitting unknown two-qubit state using five-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 53(1):111-115.
[26] YUAN Hao, LIU Yimin, ZHANG Wen. Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing[J]. Journal of Physics B Atomic Molecular & Optical Physics, 2008, 41(14):145506.
[27] ALLATI A E, BAZ M E. Quantum key distribution using optical coherent states via amplitude damping[J]. Optical & Quantum Electronics, 2015, 47(5):1035-1046.
[28] WANG Wenhua, CAO Huaixin. An improved multiparty quantum secret sharing with Bell states and Bell measurement[J]. International Journal of Theoretical Physics, 2013, 52(6):2099-2111.
[29] CHEN Xiubo, WEN Qiaoyan, SUN Zhongxu, et al. Deterministic and exact entanglement teleportation via the W state[J]. Chinese Physics B, 2010, 19(1):41-45.
[30] NIE Yiyou, LI Yuanhua, JIN Cuiping, et al. Quantum information splitting of an arbitrary multi-qubit GHZ-type state by using a four-qubit cluster state[J]. International Journal of Theoretical Physics, 2011, 10(9):603-608.
[31] HUELGA S F, VACCARO J A, CHEFLES A, et al. Quantum remote control: teleportation of unitary operations[J]. Physical Review A, 2001, 63(4):392-396.
[32] HUELGA S F, PLENIO M B, VACCARO J A. Remote control of restricted sets of operations: teleportation of angles[J]. Physical Review A, 2001, 65(4):579-579.
[33] ZHANG D, ZHA X W, LI W, et al. Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 14(10): 1-9.
[34] ZHA Xinwei, ZOU Zhichun, QI Jianxia, et al. Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. International Journal of Theoretical Physics, 2013, 52(6):1740-1744.
[35] LI Yuanhua, NIE Lipin. Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state[J]. International Journal of Theoretical Physics, 2013, 52(5):1630-1634.
[36] PENG Jiayin, LUO Mingxing, MO Zhiwen. Joint remote state preparation of arbitrary two-particle states via GHZ-type states[J]. Quantum Information Processing, 2013, 12(12):2325-2342.
[37] PENG Jiayin, BAI Mingqiang, MO Zhiwen. Joint remote state preparation of a four-dimensional quantum state[J]. Chinese Physics Letters, 2014,31(1):5-9.
[38] PENG Jiayin, LUO Mingxing, MO Zhiwen, et al. Flexible deterministic joint remote state preparation of some states[J]. International Journal of Quantum Information, 2013, 11(4):1350044.
[39] PENG Jiayin, LUO Mingxing, MO Zhiwen, et al. Joint remote preparation of arbitrary three-qubit states[J]. Modern Physics Letters, 2013, 27(22):1350160.
[40] PENG Jiayin, BAI Mingqiang, MO Zhiwen. Remote information concentration by W state[J]. International Journal of Modern Physics B, 2013, 27(26):1350137.
[41] PENG Jiayin, BAI Mingqiang, MO Zhiwen. Remote information concentration via W state: reverse of ancilla-free phase-covariant telecloning[J]. Quantum Information Processing, 2013, 12(11): 3511-3525.
[42] PENG Jiayin, LEI Hongxuan, MO Z W. Faithful remote information concentration based on the optimal universal 1→2 telecloning of arbitrary two-qubit states[J]. International Journal of Theoretical Physics, 2014, 53(5):1637-1647.
[43] PENG Jiayin, LUO Mingxing, MO Zhiwen. Remote information concentration via four-particle cluster state and by positive operator-value measurement[J]. International Journal of Modern Physics B, 2013, 27(18): 50091.
[44] CHEN Yan. Bidirectional controlled quantum teleportation by using five-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 53(5):1454-1458.
[45] MURALIDHARAN S, PANIGRAHI P K. Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state[J]. Physical Review A, 2008, 77(3): 156-156.
[46] NIE Yiyou, LI Yuanhua, SANG Minghua. Controlled dense coding through a genuine five-atom entangled state in cavity QED[J]. International Journal of Theoretical Physics, 2012, 51(8):2341-2345.
[47] HOU Kui, LI Yibao, SHI Shoushi. Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements[J]. Optics Communications, 2010, 283(9):1961-1965.
[48] 张瑾. 多量子纠缠的制备和操纵[D]. 合肥:中国科学技术大学,2007. ZHANG Jin. Preparation and manipulation of multiple quantum entanglement[D]. Hefei: University of Science and Technology of China, 2007.
[49] DUAN Yajun, ZHA Xinwei, SUN Xinmei, et al. Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 53(8): 2697-2707.
[50] CHEN Yan. Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state[J]. International Journal of Theoretical Physics, 2015, 54(1):269-272.
[51] YAN A. Bidirectional controlled teleportation via six-qubit cluster state[J]. International Journal of Theoretical Physics, 2013, 52(11):3870-3873.
[52] SHUKLA C, BANERJEE A, PATHAK A. Bidirectional controlled teleportation by using 5-qubit states: a generalized view[J]. International Journal of Theoretical Physics, 2013, 52(10):3790-3796.
[1] 刘利钊,于佳平,刘健,李俊祎,韩哨兵,许华荣,林怀钏,朱顺痣. 基于量子辐射场的大数据安全存储寻址算法[J]. 山东大学学报(理学版), 2018, 53(7): 65-74.
[2] 宋省身,杨岳湘,江宇. 基于单指令级并行的快速求交算法[J]. 山东大学学报(理学版), 2018, 53(3): 54-62.
[3] 齐平, 王福成, 王必晴. 一种基于图模型的可信云资源调度算法[J]. 山东大学学报(理学版), 2018, 53(1): 63-74.
[4] 朱丹,谢晓尧,徐洋,夏梦婷. 基于云模型与贝叶斯反馈的网络安全等级评估方法[J]. 山东大学学报(理学版), 2018, 53(1): 53-62.
[5] 史佩昀,高兴宝. 基于个体强度的自适应差分多目标免疫算法[J]. 山东大学学报(理学版), 2017, 52(11): 1-10.
[6] 王峰,曼媛,王幸乐. 基于人工免疫的N最短路径检索算法[J]. 山东大学学报(理学版), 2017, 52(9): 35-40.
[7] 王霞,张茜,李俊余,刘庆凤. 基于粗糙集的三元概念分析[J]. 山东大学学报(理学版), 2017, 52(7): 37-43.
[8] 马兰,李伟岸,尹天懿. 基于变邻域搜索改进的冲突解脱粒子群算法[J]. 山东大学学报(理学版), 2017, 52(1): 23-28.
[9] 杜红乐,张燕,张林. 不均衡数据集下的入侵检测[J]. 山东大学学报(理学版), 2016, 51(11): 50-57.
[10] 谢建民,姚兵,赵廷刚. 广义太阳图Sm,n奇优雅标号算法及实现[J]. 山东大学学报(理学版), 2016, 51(4): 79-85.
[11] 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
[12] 李敬文, 贾西贝, 董威, 李小慧, 闫光辉. 图的邻点可区别全染色算法[J]. 山东大学学报(理学版), 2015, 50(02): 14-21.
[13] 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21.
[14] 刘惊雷 王玲玲 张伟. 角色分配格的生成算法[J]. J4, 2009, 44(11): 52-56.
[15] 曲守宁,付爱芳,李静,刘静. 基于柔性神经树模型的股票市场风险预测[J]. J4, 2009, 44(11): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .