《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 114-119.doi: 10.6040/j.issn.1671-9352.0.2017.504
吴晨,金英花*,王世丽
WU Chen, JIN Ying-hua*, WANG Shi-li
摘要: 研究了等级制度下带有白噪声的群集运动。首先提出了等级制度下带有白噪声的模型,然后利用伊藤公式、数学归纳法和数学期望的性质证明了当噪声强度满足一定的条件,时间趋于无穷大时,等级群体可以达到群集运动。最后,通过数值仿真给出了群集受到噪声影响后的状态图和误差图的例子。实验结果证明了结论的正确性。
中图分类号:
[1] BREDER C M. Equations descriptive of fish schools and other animal aggregations[J]. Ecology, 1954, 35:361-370. [2] RU Lining, LI Zhuchun, XUE Xiaoping. Cucker-Smale flocking with randomly failed interactions[J]. Journal of the Franklin Institute, 2015, 352(3):1099-1118. [3] LIU Yicheng, WU Jianhong. Flocking and asymptotic velocity of the Cucker-Smale model with processing delay[J]. Journal of Mathematical Analysis and Applica-tions, 2014, 415(1):53-61. [4] AHN S, BAE H-O, HA S-Y, et al. Application of flocking mechanism to the modeling of stochastic volatility[J]. Math Models Methods Appl Sci, 2013, 23(9):1603-1628. [5] YANG Zhengquan, ZHANG Qing, JIANG Zuolian, et al. Flocking of multi-agents with time delay[J]. International Journal of Systems Science, 2012, 43(11):2125-2134. [6] RU Lining, LI Zhuchun, XUE Xiaoping. Cucker-Smale flocking with randomly failed interactions[J]. Journal of the Franklin Institute, 2015, 352(3):1099-1118. [7] TANNER H, JADBABAIE A, PAPPAS G. Flocking in fixed and switching networks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):863-868. [8] CUCKER F, MORDECKI E. Flocking in noisy environment[J]. J Math Pures Appl, 2008, 89:278-296. [9] HA S-Y, LIU J-G. A simple proof of Cucker-Smale focking dynamics and mean field limit[J]. Commun Math Sci, 2009, 7:297-325. [10] HA S-Y, TADMOR E. From particle to kinetic and hydrodynamic description of flocking[J]. Kinetic Relat Models, 2008, 1(3):415-435. [11] AHN S, CHOI H, HA S-Y, et al. On the collision avoiding initial configurations to the Cucker-Smale type flocking models[J]. Commun Math Sci, 2012, 10:625-643. [12] AHN S, HA S-Y. Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises[J]. Journal of Mathematical Physics, 2010, 51:103301. [13] CHO J, HA S-Y, HUANG F, et al. Emergence of bicluster flocking for agent-based models with unit speed constraint[J]. Analysis and Applications, 2016, 14(1):39-73. [14] REYNOLDS C W. Flocks, herds, and schools: a distributed behavioral model[J]. Computer Graphics, 1987, 21:25-34. [15] VICSEK T, CZIROK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75:1226-1229. [16] CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):852-862. [17] CUCKER F, SMALE S. On the mathematics of emergence[J]. Japanese Journal of Mathematics, 2007, 2(1):197-227. [18] SHEN J. Cucker-Smale flocking under hierarchical leadership[J]. Appl Math, 2007, 68:694-719. [19] CUCKER F, DONG J G. A general collision-avoiding flocking framework[J]. IEEE Transactions on Automatic Control, 2011, 56(5):1124-1128. [20] DONG J. Flocking under hierarchical leadership with a free-will leader[J]. International Journal Robust Non-linear Control, 2013, 23:1891-1898. |
[1] | 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29. |
[2] | . 有观测时滞线性系统的白噪声最优估计[J]. J4, 2009, 44(6): 63-68. |
|