您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 114-119.doi: 10.6040/j.issn.1671-9352.0.2017.504

• • 上一篇    下一篇

等级制度下带有白噪声的群集运动

吴晨,金英花*,王世丽   

  1. 江南大学理学院, 江苏 无锡 214122
  • 出版日期:2018-12-20 发布日期:2018-12-18
  • 作者简介:吴晨(1993— ),男,硕士研究生,研究方向为领域多智能体群集运动分析与控制. E-mail:wuchen0303@foxmail.com*通信作者简介:金英花(1972— ),女,博士,副教授,研究方向为非线性微分方程及其应用. E-mail:jyhmath@jiangnan.edu.cn
  • 基金资助:
    江苏省产学研前瞻性联合研究项目(BY2016022-17);2017年江苏省研究生科研创新计划项目(KYCX17-1480)

Flocking under hierarchical leadership with white noise

WU Chen, JIN Ying-hua*, WANG Shi-li   

  1. School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Online:2018-12-20 Published:2018-12-18

摘要: 研究了等级制度下带有白噪声的群集运动。首先提出了等级制度下带有白噪声的模型,然后利用伊藤公式、数学归纳法和数学期望的性质证明了当噪声强度满足一定的条件,时间趋于无穷大时,等级群体可以达到群集运动。最后,通过数值仿真给出了群集受到噪声影响后的状态图和误差图的例子。实验结果证明了结论的正确性。

关键词: 群集运动, 等级制度, 白噪声, 数学归纳法

Abstract: The flocking under hierarchical leadership with white noise was mainly studied. First we proposed a model with white noise under the hierarchical leadership, and then use the properties of Itô formula, mathematical induction and mathematical expectation function to prove that when the noise intensity satisfies certain conditions and the time tends to infinity, the hierarchical group can reach the flocking. Finally, an example of state diagram and error graph after cluster is affected by noise is given by numerical simulation. The experimental results demonstrate the correctness of the conclusions.

Key words: flocking, hierarchical leadership, white noise, mathematical induction

中图分类号: 

  • TP13
[1] BREDER C M. Equations descriptive of fish schools and other animal aggregations[J]. Ecology, 1954, 35:361-370.
[2] RU Lining, LI Zhuchun, XUE Xiaoping. Cucker-Smale flocking with randomly failed interactions[J]. Journal of the Franklin Institute, 2015, 352(3):1099-1118.
[3] LIU Yicheng, WU Jianhong. Flocking and asymptotic velocity of the Cucker-Smale model with processing delay[J]. Journal of Mathematical Analysis and Applica-tions, 2014, 415(1):53-61.
[4] AHN S, BAE H-O, HA S-Y, et al. Application of flocking mechanism to the modeling of stochastic volatility[J]. Math Models Methods Appl Sci, 2013, 23(9):1603-1628.
[5] YANG Zhengquan, ZHANG Qing, JIANG Zuolian, et al. Flocking of multi-agents with time delay[J]. International Journal of Systems Science, 2012, 43(11):2125-2134.
[6] RU Lining, LI Zhuchun, XUE Xiaoping. Cucker-Smale flocking with randomly failed interactions[J]. Journal of the Franklin Institute, 2015, 352(3):1099-1118.
[7] TANNER H, JADBABAIE A, PAPPAS G. Flocking in fixed and switching networks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):863-868.
[8] CUCKER F, MORDECKI E. Flocking in noisy environment[J]. J Math Pures Appl, 2008, 89:278-296.
[9] HA S-Y, LIU J-G. A simple proof of Cucker-Smale focking dynamics and mean field limit[J]. Commun Math Sci, 2009, 7:297-325.
[10] HA S-Y, TADMOR E. From particle to kinetic and hydrodynamic description of flocking[J]. Kinetic Relat Models, 2008, 1(3):415-435.
[11] AHN S, CHOI H, HA S-Y, et al. On the collision avoiding initial configurations to the Cucker-Smale type flocking models[J]. Commun Math Sci, 2012, 10:625-643.
[12] AHN S, HA S-Y. Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises[J]. Journal of Mathematical Physics, 2010, 51:103301.
[13] CHO J, HA S-Y, HUANG F, et al. Emergence of bicluster flocking for agent-based models with unit speed constraint[J]. Analysis and Applications, 2016, 14(1):39-73.
[14] REYNOLDS C W. Flocks, herds, and schools: a distributed behavioral model[J]. Computer Graphics, 1987, 21:25-34.
[15] VICSEK T, CZIROK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75:1226-1229.
[16] CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):852-862.
[17] CUCKER F, SMALE S. On the mathematics of emergence[J]. Japanese Journal of Mathematics, 2007, 2(1):197-227.
[18] SHEN J. Cucker-Smale flocking under hierarchical leadership[J]. Appl Math, 2007, 68:694-719.
[19] CUCKER F, DONG J G. A general collision-avoiding flocking framework[J]. IEEE Transactions on Automatic Control, 2011, 56(5):1124-1128.
[20] DONG J. Flocking under hierarchical leadership with a free-will leader[J]. International Journal Robust Non-linear Control, 2013, 23:1891-1898.
[1] 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29.
[2] . 有观测时滞线性系统的白噪声最优估计[J]. J4, 2009, 44(6): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[2] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[3] 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61 -68 .
[4] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[5] 李娇. Caputo分数阶微分方程初值问题解的存在性与惟一性[J]. J4, 2013, 48(4): 60 -64 .
[6] 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111 -113 .
[7] 李世龙,张云峰 . 一类基于算术均差商的有理三次插值样条的逼近性质[J]. J4, 2007, 42(10): 106 -110 .
[8] 章东青,殷晓斌,高汉鹏. Quasi-线性Armendariz模[J]. 山东大学学报(理学版), 2016, 51(12): 1 -6 .
[9] 孙亮吉. 广义Jordan-导子和Jordan-同态的稳定性的刻画[J]. J4, 2008, 43(12): 77 -79 .
[10] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .