您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 120-126.doi: 10.6040/j.issn.1671-9352.0.2017.400

• • 上一篇    

覆盖决策系统的规则提取和置信度保持的属性约简算法

张晓1,杨燕燕2   

  1. 1.西安理工大学理学院, 陕西 西安 710048;2.清华大学自动化系, 北京 100084
  • 出版日期:2018-12-20 发布日期:2018-12-18
  • 作者简介:张晓(1986— ),女,博士,讲师,研究方向为基于粗糙集和粒计算的数据挖掘理论和方法. E-mail:zhangxiaoo@126.com
  • 基金资助:
    国家自然科学基金资助项目(61602372);西安理工大学博士研究启动基金(109-256081504)

Algorithms of rule acquisition and confidence-preserved attribute reduction in covering decision systems

ZHANG Xiao1, YANG Yan-yan2   

  1. 1. School of Sciences, Xian University of Technology, Xian 710048, Shaanxi, China;
    2. Department of Automation, Tsinghua University, Beijing 100084, China
  • Online:2018-12-20 Published:2018-12-18

摘要: 实际中收集的数据类型具有多样性,如何从这些复杂数据中获取有用的知识是人们进行数据挖掘的目标。由于覆盖粗糙集可以处理复杂的数据,基于此对覆盖决策系统的属性约简和规则提取已有不少的研究。已有的覆盖决策系统规则提取的研究只考虑唯一的置信度评估度量,然而提取的高置信度规则覆盖的样例可能较少而具有欺骗性,由此本文又引入了一个评估规则覆盖能力的度量,从而可以消除数据中的偶然因素,获取泛化能力强的高置信度规则。在此基础上,为了提取紧凑的规则,给出了一个规则置信度保持的属性约简启发式算法。

关键词: 粗糙集, 覆盖决策系统, 规则提取, 属性约简

Abstract: The data collected in practice is of diversity. How to obtain useful knowledge from the complex data is the objective of data mining. Since covering rough sets can deal with complex data, there exists much study on the attribute reduction and rule acquisition of covering decision systems based on covering rough sets. The existing research on the rule acquisition of covering decision systems considered the confidence measure as the only evaluation criterion. However, the extracted high-confidence rules may cover fewer instances and then be potentially spurious. Therefore, a measure that can assess the coverage ability of rules is introduced, which can eliminate the chance in data and thus acquire high-confidence rules with more generalization ability. Furthermore, in order to extract compact rules, we propose a rule confidence-preserved attribute reduction heuristic algorithm.

Key words: rough sets, covering decision systems, rule acquisition, attribute reduction

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based on similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336.
[3] KRYSZKIEWICZ M. Rough set approach to incomplete information system[J]. Information Sciences, 1998, 112(1/2/3/4):39-49.
[4] WU Weizhi, ZHANG Wenxiu. Neighborhood opertor systems and approximations[J]. Information Sciences, 2002, 144(1/2/3/4):201-217.
[5] YAO Yiyu. Neighborhood systems and approximate retrieval[J]. Information Sciences, 2006, 176(23):3431-3452.
[6] GRECO S, MATARAZZO B, SLOWINSKI R. Rough approximation by dominance relations[J]. International Journal of Intelligent Systems, 2002, 17(2):153-171.
[7] QIAN Yuhua, LIANG Jiye, SONG Peng, et al. Evaluation of the decision performance of the decision rule set from an ordered decision table[J]. Knowledge-Based Systems, 2012, 36:39-50.
[8] ZAKOWSKI W. Approximations in the space(U, Π)[J]. Demonstratio Mathematica, 1983, 16(3):761-769.
[9] CHEN Degang, WANG Changzhong, HU Qinghua. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets[J]. Information Sciences, 2007, 177(17):3500-3518.
[10] 许晴媛, 李进金, 张燕兰. 覆盖决策信息系统的约简[J]. 山东大学学报(理学版), 2010, 45(1):89-93. XU Qingyuan, LI Jinjin, ZHANG Yanlan. Reductions about covering decision information system[J]. Journal of Shandong University(Natural Science), 2010, 45(1):89-93.
[11] 杨田, 伍秀华, 王玉芳. 覆盖粗糙集属性约简的新算法[J]. 模糊系统与数学, 2013, 27(2):183-190. YANG Tian, WU Xiuhua, WANG Yufang. A new attribute reduction algorithm of covering rough sets[J]. Fuzzy Systems and Mathematics, 2013, 27(2):183-190.
[12] CHEN Degang, LI Wanlu, ZHANG Xiao, et al. Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(3):908-923.
[13] WANG Changzhong, SHAO Mingwen, SUN Baiqing, et al. An improved attribute reduction scheme with covering based rough sets[J]. Applied Soft Computing, 2015, 26:235-243.
[14] DONG Ze, SUN Ming, YANG Yanyan. Fast algorithms of attribute reduction for covering decision systems with minimal elements in discernibility matrix[J]. International Journal of Machine Learning and Cybernetics, 2016, 7(2):297-310.
[15] 谭安辉, 李进金, 吴伟志. 多粒度粗糙集和覆盖粗糙集间的近似与约简关系[J]. 模式识别与人工智能, 2016, 29(8):691-697. TAN Anhui, LI Jinjin, WU Weizhi. Approximation and reduction relationships between multi-granulation rough sets and covering rough sets[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(8):691-697.
[16] ZHU W, WANG Feiyue. On three types of covering rough sets[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8):1131-1144.
[17] DU Yong, HU Qinghua, ZHU Pengfei, et al. Rule learning for classification based on neighborhood covering reduction[J]. Information Sciences, 2011, 181(24):5457-5467.
[18] 阎红灿, 张奉, 刘保相. 基于粒计算的粗决策规则抽取与约简[J]. 通信学报, 2016, 37(Z1):30-35. YAN Hongcan, ZHANG Feng, LIU Baoxiang. Rough decision rules extraction and reduction based on granular computing[J]. Journal on Communications, 2016, 37(Z1):30-35.
[19] ZHANG Xiao, MEI Changlin, CHEN Degang, et al. Multi-confidence rule acquisition oriented attribute reduction of covering decision systems via combinatorial optimization[J]. Knowledge-Based Systems, 2013, 50:187-197.
[20] CLARK P, NIBLETT T. The CN2 induction algorithm[J]. Machine Learning, 1989, 3(4):261-283.
[1] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[2] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[3] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[4] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[5] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[6] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[7] 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110.
[8] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[9] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[10] 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
[11] 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117.
[12] 安秋生, 孔祥玉. 函数依赖与多值依赖的再研究[J]. 山东大学学报(理学版), 2014, 49(08): 1-5.
[13] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[14] 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(08): 97-101.
[15] 吴正江, 刘永利, 高岩. 拟单层覆盖上的覆盖粗糙集族[J]. 山东大学学报(理学版), 2014, 49(08): 6-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[3] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[4] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[5] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[6] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[7] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[8] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[9] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[10] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .