《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 120-126.doi: 10.6040/j.issn.1671-9352.0.2017.400
• • 上一篇
张晓1,杨燕燕2
ZHANG Xiao1, YANG Yan-yan2
摘要: 实际中收集的数据类型具有多样性,如何从这些复杂数据中获取有用的知识是人们进行数据挖掘的目标。由于覆盖粗糙集可以处理复杂的数据,基于此对覆盖决策系统的属性约简和规则提取已有不少的研究。已有的覆盖决策系统规则提取的研究只考虑唯一的置信度评估度量,然而提取的高置信度规则覆盖的样例可能较少而具有欺骗性,由此本文又引入了一个评估规则覆盖能力的度量,从而可以消除数据中的偶然因素,获取泛化能力强的高置信度规则。在此基础上,为了提取紧凑的规则,给出了一个规则置信度保持的属性约简启发式算法。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based on similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336. [3] KRYSZKIEWICZ M. Rough set approach to incomplete information system[J]. Information Sciences, 1998, 112(1/2/3/4):39-49. [4] WU Weizhi, ZHANG Wenxiu. Neighborhood opertor systems and approximations[J]. Information Sciences, 2002, 144(1/2/3/4):201-217. [5] YAO Yiyu. Neighborhood systems and approximate retrieval[J]. Information Sciences, 2006, 176(23):3431-3452. [6] GRECO S, MATARAZZO B, SLOWINSKI R. Rough approximation by dominance relations[J]. International Journal of Intelligent Systems, 2002, 17(2):153-171. [7] QIAN Yuhua, LIANG Jiye, SONG Peng, et al. Evaluation of the decision performance of the decision rule set from an ordered decision table[J]. Knowledge-Based Systems, 2012, 36:39-50. [8] ZAKOWSKI W. Approximations in the space(U, Π)[J]. Demonstratio Mathematica, 1983, 16(3):761-769. [9] CHEN Degang, WANG Changzhong, HU Qinghua. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets[J]. Information Sciences, 2007, 177(17):3500-3518. [10] 许晴媛, 李进金, 张燕兰. 覆盖决策信息系统的约简[J]. 山东大学学报(理学版), 2010, 45(1):89-93. XU Qingyuan, LI Jinjin, ZHANG Yanlan. Reductions about covering decision information system[J]. Journal of Shandong University(Natural Science), 2010, 45(1):89-93. [11] 杨田, 伍秀华, 王玉芳. 覆盖粗糙集属性约简的新算法[J]. 模糊系统与数学, 2013, 27(2):183-190. YANG Tian, WU Xiuhua, WANG Yufang. A new attribute reduction algorithm of covering rough sets[J]. Fuzzy Systems and Mathematics, 2013, 27(2):183-190. [12] CHEN Degang, LI Wanlu, ZHANG Xiao, et al. Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(3):908-923. [13] WANG Changzhong, SHAO Mingwen, SUN Baiqing, et al. An improved attribute reduction scheme with covering based rough sets[J]. Applied Soft Computing, 2015, 26:235-243. [14] DONG Ze, SUN Ming, YANG Yanyan. Fast algorithms of attribute reduction for covering decision systems with minimal elements in discernibility matrix[J]. International Journal of Machine Learning and Cybernetics, 2016, 7(2):297-310. [15] 谭安辉, 李进金, 吴伟志. 多粒度粗糙集和覆盖粗糙集间的近似与约简关系[J]. 模式识别与人工智能, 2016, 29(8):691-697. TAN Anhui, LI Jinjin, WU Weizhi. Approximation and reduction relationships between multi-granulation rough sets and covering rough sets[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(8):691-697. [16] ZHU W, WANG Feiyue. On three types of covering rough sets[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8):1131-1144. [17] DU Yong, HU Qinghua, ZHU Pengfei, et al. Rule learning for classification based on neighborhood covering reduction[J]. Information Sciences, 2011, 181(24):5457-5467. [18] 阎红灿, 张奉, 刘保相. 基于粒计算的粗决策规则抽取与约简[J]. 通信学报, 2016, 37(Z1):30-35. YAN Hongcan, ZHANG Feng, LIU Baoxiang. Rough decision rules extraction and reduction based on granular computing[J]. Journal on Communications, 2016, 37(Z1):30-35. [19] ZHANG Xiao, MEI Changlin, CHEN Degang, et al. Multi-confidence rule acquisition oriented attribute reduction of covering decision systems via combinatorial optimization[J]. Knowledge-Based Systems, 2013, 50:187-197. [20] CLARK P, NIBLETT T. The CN2 induction algorithm[J]. Machine Learning, 1989, 3(4):261-283. |
[1] | 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16. |
[2] | 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33. |
[3] | 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24. |
[4] | 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29. |
[5] | 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36. |
[6] | 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104. |
[7] | 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110. |
[8] | 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103. |
[9] | 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104. |
[10] | 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64. |
[11] | 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117. |
[12] | 安秋生, 孔祥玉. 函数依赖与多值依赖的再研究[J]. 山东大学学报(理学版), 2014, 49(08): 1-5. |
[13] | 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91. |
[14] | 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(08): 97-101. |
[15] | 吴正江, 刘永利, 高岩. 拟单层覆盖上的覆盖粗糙集族[J]. 山东大学学报(理学版), 2014, 49(08): 6-14. |
|