《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 12-23.doi: 10.6040/j.issn.1671-9352.0.2019.539
• • 上一篇
李远飞
LI Yuan-fei
摘要: 考虑了柱形区域上带振荡随机力的大尺度海洋三维原始方程组的连续依赖性。运用微分不等式技术,推导了方程组解的先验界,采取能量分析的办法,得到了方程组的解对黏性系数的连续依赖性。
中图分类号:
[1] RICHARDSON L F. Weather prediction by numerical press[M]. Cambridge: Cambridge University Press, 1922. [2] HUANG Daiwen, GUO Boling. On two-dimensional large-scale primitive equations in oceanic dynamics(I)[J]. Applied Mathematics & Mechanics, 2007, 28(5):581-592. [3] HUANG Daiwen, GUO Boling. On two-dimensional large-scale primitive equations in oceanic dynamics(II)[J]. Applied Mathematics & Mechanics, 2007, 28(5):593-600. [4] HIEBER M, HUSSEIN A, KASHIWABARA T. Global strong Lp well-posedness of the 3D primitive equations with heat and salinity diffusion[J]. Journal of Differential Equations, 2016, 261:6950-6981. [5] GUO Boling, HUANG Daiwen, WANG Wei. Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force[J]. Journal of Differential Equations, 2015, 259(6):2388-2407. [6] GUO Boling, HUANG Daiwen. On the 3D viscous primitive equations of the large-scale atmosphere[J]. Acta Mathematica Scientia, 2009, 29(4):846-866. [7] YOU Bo, LI Fang. Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics[J]. Zeitschrift für angewandte Mathematik und Physik, 2018, 69(5):114. [8] JIU Quansen, LI Mingjie, WANG Fengchao. Uniqueness of the global weak solutions to 2D compressible primitive equations[J]. Journal of Mathematical Analysis and Applications, 2018, 461:1653-1671. [9] CHIODAROLI E, MICHÁLEK M. Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations[J]. Communications in Mathematical Physics, 2017, 353(3):1201-1216. [10] SUN Jinyi, YANG Minghua. Global well-posedness for the viscous primitive equations of geophysics[J]. Boundary Value Problems, 2016, 2016(1):21. [11] SUN Jinyi, CUI Shangbin. Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces[J]. Nonlinear Analysis: Real World Applications, 2019, 48:445-465. [12] CAO Chongsheng, IBRAHIM S, EDRISS N K, et al. Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics[J]. Communications in Mathematical Physics, 2015, 337(2):473-482. [13] CAO Chongsheng, LI Jinkai, TITI E S. Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity[J]. Journal of Differential Equations, 2014, 257(11):4108-4132. [14] ZHANG Lin, WANG Shu. Finite-time blowup for the 3-D primitive equations of oceanic and atmospheric dynamics[J]. Applied Mathematics Letters, 2018, 76:117-122. [15] DONG Zhao, ZHAI Jianliang, ZHANG Rangrang. Large deviation principles for 3D stochastic primitive equations[J]. Journal of Differential Equations, 2017, 263(5):3110-3146. [16] 郭柏灵,黄代文,黄春研.大气、海洋动力学中一些非线性偏微分方程的研究[J].中国科学:物理学 力学 天文学, 2014, 44(12):1275-1285. GUO Boling, HUANG Daiwen, HUANG Chunyan. Study on some partial differential equations in the atmospheric and oceanic dynamics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(12):1275-1285. [17] FRANKIGNOUL C, HASSELMANN K. Stochastic climate models. Part II: application to sea-surface temperature anomalies and thermocline variability[J]. Tellus, 1977, 29:289-305. [18] 李麦村,黄嘉佑.大气关于海温准三年及准半年周期振荡的随机气候模式[J].气象学报, 1984, 42(2):168-176. LI Maicun, HUANG Jiayou. A stochastic climate model on the quasi three-yearly and half-yearly oscillation of the sea surface temperature[J]. Acta Meteorologica Sinica, 1984, 42(2):168-176. [19] GUO Boling, HUANG Daiwen. 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors[J]. Communications in Mathematical Physics, 2009, 286(2):697-723. [20] GUO Boling, HUANG Daiwen. On the primitive equations of large-scale ocean with stochastic boundary[J]. Differential and Integral Equations, 2010, 23(3/4):373-398. [21] HIRSCH M W, SMALE S. Differential equations, dynamical systems and linear algebra[M]. New York: Academic Press, 1974. [22] AMES K A, STRAUGHAN B. Non-standard and improperly posed problems[M]. San Diego: Mathematics in Science and Engineering Series, Academic Press, 1997. [23] 李振邦.一类非局部Cahn-Hilliard方程弱解的存在唯一性[J]. 纯粹数学与应用数学, 2019, 35(1):15-33. LI Zhenbang. The existence and uniqueness of solutions for a nonlocal convective Cahn-Hilliard equation[J]. Pure and Applied Mathematics, 2019, 35(1):15-33. [24] LIU Yan, XIAO Shengzhong, LIN Yiwu. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain[J]. Mathematics and Computers in Simulation, 2018, 150:66-88. [25] LIU Yan. Continuous dependence for a thermal convection model with temperature-dependent solubitity[J]. Applied Mathematics and Computation, 2017, 308:18-30. [26] LI Yuanfei, LIN Changhao. Continuous dependence for the non-homogeneous Brinkman-Forchheimer equations in a semi-infinite pipe[J]. Applied Mathematics and Computation, 2014, 244:201-208. [27] HARDY C H, LITTLEWOOD J E, POLYA G. Inequalities[M]. London: Cambridge University Press, 1953. [28] MITRONOVIC D S. Analytical inequalities[M]. [S.l.] : Springer-Verlag Atlantis Press, 1970. [29] LIN Changhao, PAYNE L E. Continuous dependence on the Soret coefficient for double diffusive convection in darcy flow[J]. Journal of Mathematical Analysis and Applications, 2008, 342(1):311-325. [30] PAYNE L E, STRAUGHAN B. Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions[J]. Journal de Mathématiques Pures et Appliqués, 1998, 77(4):317-354. |
[1] | 席进华. 四阶两点常微分方程边值问题解的存在性[J]. J4, 2009, 44(1): 67-73 . |
[2] | 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68-71 . |
|