您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 48-53.doi: 10.6040/j.issn.1671-9352.0.2019.560

• • 上一篇    

3-莱布尼兹代数及其Rota-Baxter算子的构造

李芳淑,李林涵,张良云*   

  1. 南京农业大学理学院, 江苏 南京 210095
  • 发布日期:2020-04-09
  • 作者简介:李芳淑(1993— ), 女, 硕士研究生, 研究方向为Hopf代数. E-mail:908632155@qq.com*通信作者简介:张良云(1964— ), 男, 博士, 教授, 研究方向为Hopf代数. E-mail:zlyun@njau.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11571173)

Construction of 3-Leibniz algebras and their Rota-Baxter operators

LI Fang-shu, LI Lin-han, ZHANG Liang-yun*   

  1. College of Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Published:2020-04-09

摘要: 莱布尼兹代数作为李代数的推广,已经发展到很高的水平和阶段。由莱布尼兹代数构造 3-莱布尼兹代数,以及由 3-莱布尼兹代数构造Rota-Baxter算子,是一个非常有意义和重要的课题。

关键词: 莱布尼兹代数, 3-莱布尼兹代数, 弱Hopf代数, Rota-Baxter算子

Abstract: Leibniz algebras have developed to a very high level and stage as a generalization of Lie algebras. Constructing 3-Leibniz algebras from Leibniz algebras and Rota-Baxter operators on 3-Leibniz algebras have become a very important and meaningful subject.

Key words: Leibniz algebra, 3-Leibniz algebra, weak Hopf algebra, Rota-Baxter operator

中图分类号: 

  • O153.3
[1] CALDERÓN A J, SÁNCHEZ J. Split 3-Leibniz algebras[J]. Journal of Geometry and Physics, 2017, 116(3):204-215.
[2] BAI R P, GUO L, LI J, et al. Rota-Baxter 3-Lie algebras[J]. Journal of Mathematical Physics, 2013, 54(6):263-277.
[3] BARNES D W. Some theorems on Leibniz algebras[J]. Communications in Algebra, 2011, 39(7):2463-2472.
[4] CASAS J M, LODAY J L, PIRASHVILI T. Leibniz n-algebras[C] // Forum Mathematicum. Berlin: De Gruyter, 2002: 189-208.
[5] ROTA G C. Baxter algebras and combinatorial identities. I[J]. Bulletin of the American Mathematical Society, 1969, 75(2):330-334.
[6] ANDREWS G E, GUO L, KEIGHER W, ONO K. Baxter algebras and Hopf algebras[J]. Transactions of the American Mathematical Society, 2003, 355(8):4639-4656.
[7] EBRAHIMI-FARD K, GUO L. Rota-Baxter algebras and dendriform algebras[J]. Journal of Pure and Applied Algebra, 2005, 212(2):320-339.
[8] JIAN Runqiang. Construction of Rota-Baxter algebras via Hopf module algebras[J]. Science in China Mathematics, 2014, 57(11):2321-2328.
[9] LI X X, HOU D P, BAI C M. Rota-Baxter operators on pre-Lie algebras[J]. Journal of Nonlinear Mathematical Physics, 2007, 14(2):269-289.
[10] ZHANG L Y, LI L H, ZHENG H H. Rota-Baxter Leibniz algebras and their constructions[J/OL]. Advances in Mathematical Physics, 2018: 1-15[2019-01-01]. http://downloads.hindawi.com/journals/amp/2018/8540674.pdf.
[11] AN Huihui, BAI Chengming. From Rota-Baxter algebras to pre-Lie algebras[J]. Journal of Physics A Mathematical and Theoretical, 2008, 41(1):145-150.
[12] BÖHM G, NILL F, SZLACHÁNYI K. Weak Hopf algebras(I): Integral theory and C*-structure[J]. Journal of Algebra, 1999, 221(2):385-438.
[13] ZHANG L Y. The structure theorem of weak comodule algebras[J]. Communications in Algebra, 2010, 38(1):254-260.
[1] 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52.
[2] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[3] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20-22.
[4] 陈华喜1,张晓辉2,许庆兵3. Yetter-Drinfeld模范畴上的弱余模代数结构定理[J]. J4, 2013, 48(12): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!