您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 110-116.doi: 10.6040/j.issn.1671-9352.0.2019.786

•   • 上一篇    下一篇

黄河三角洲植物多样性与生态系统多功能性间的关系

张文馨1,2(),范小莉1,3,王强4,房用1,3,梁玉1,3,*()   

  1. 1. 山东省林业科学研究院, 山东 济南 250014
    2. 山东大学生命科学学院,山东 青岛 266237
    3. 山东省湿地生态恢复工程技术研究中心, 山东 济南 250014
    4. 山东省林业外资与工程项目管理站, 山东 济南 250014
  • 收稿日期:2019-10-31 出版日期:2020-01-20 发布日期:2020-01-10
  • 通讯作者: 梁玉 E-mail:zhangwenxin_508@163.com;ly7779@163.com
  • 作者简介:张文馨(1989—),女,博士,工程师,研究方向为生态学. E-mail:zhangwenxin_508@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2017BC090);山东省农业科技资金(林业科技创新)项目(2019LY010)

Relationship between plant diversity and ecosystem multifunctionality in the Yellow River Delta

Wen-xin ZHANG1,2(),Xiao-li FAN1,3,Qiang WANG4,Yong FANG1,3,Yu LIANG1,3,*()   

  1. 1. Shandong Academy of Forestry, Jinan 250014, Shandong, China
    2. School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
    3. Shandong Wetland Ecological Restoration Engineering Technology Research Center, Jinan 250014, Shandong, China
    4. Forestry Foreign Investment and Project Management Station of Shandong Province, Jinan 250014, Shandong, China
  • Received:2019-10-31 Online:2020-01-20 Published:2020-01-10
  • Contact: Yu LIANG E-mail:zhangwenxin_508@163.com;ly7779@163.com

摘要:

以生境多变的黄河三角洲自然保护区为研究地,对黄河三角洲植物群落进行野外调查,探究自然生态系统中植物多样性与生态系统多功能性之间的关系。研究发现,植物物种丰富度、植物多样性Shannon指数和Simpson指数都与生态系统多功能性呈显著的正相关关系,而植物物种丰富度对生态系统多功能性变化的解释量最大,表明生态系统同时维持和提供多种服务功能需要更多的植物物种数量来支撑。土壤盐分是影响黄河三角洲植物多样性和生态系统多功能性的主要环境因素,土壤盐分的升高直接引起植物多样性的降低,从而间接导致生态系统多功能性下降。

关键词: 植物多样性, 生态系统多功能性, 黄河三角洲

Abstract:

The Yellow River Delta is selected as the study area and the relationship between plant diversity and ecosystem multifunctionality is explored. The species richness, Shannon index and Simpson index are positively related to ecosystem multifunctionality, but species richness has a larger effect than Shannon index and Simpson index. High biodiversity has been shown to be especially important for simultaneously sustaining multiple ecosystem functions at high levels. Soil salinity is the main environmental factor that affects the plant diversity and ecosystem multifunctionality. High Soil salinity directly decreases the plant diversity, and indirectly results in the descend of ecosystem multifunctionality.

Key words: plant diversity, ecosystem multifunctionality, the Yellow River Delta

中图分类号: 

  • Q948

图1

研究区域及样方分布图(图中阴影区域为黄河三角洲自然保护区,圆点为取样点)"

图2

黄河三角洲植物多样性与环境因素间的关系"

图3

黄河三角洲环境因素与不同生态系统功能间的关系"

图4

黄河三角洲环境因素与生态系统多功能性间的关系"

图5

黄河三角洲植物多样性与不同生态系统功能间的关系"

图6

黄河三角洲植物多样性与生态系统多功能性的关系"

1 HOOPER D U , CHAPIN Ⅲ F S , EWEL J J , et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge[J]. Ecological Monographs, 2005, 75 (1): 3- 35.
doi: 10.1890/04-0922
2 CARDINALE B J , DUFFY J E , GONZALEZ A , et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486 (7401): 59- 67.
doi: 10.1038/nature11148
3 CARDINALE B J , MATULICH K L , HOOPER D U , et al. The functional role of producer diversity in ecosystems[J]. American Journal of Botany, 2011, 98 (3): 572- 592.
doi: 10.3732/ajb.1000364
4 PAQUETTE A , MESSIER C . The effect of biodiversity on tree productivity: from temperate to boreal forests[J]. Global Ecology and Biogeography, 2011, 20 (1): 170- 180.
doi: 10.1111/j.1466-8238.2010.00592.x
5 LIANG Jingjing , CROWTHER T W , PICARD N , et al. Positive biodiversity-productivity relationship predominant in global forests[J]. Science, 2016, 354 (6309): 1- 12.
6 张全国, 张大勇. 生物多样性与生态系统功能:最新的进展与动向[J]. 生物多样性, 2003, 11 (5): 351- 363.
doi: 10.3321/j.issn:1005-0094.2003.05.001
ZHANG Quanguo , ZHANG Dayong . Biodiversity and ecosystem functioning:recent advances and trends[J]. Biodiversity Science, 2003, 11 (5): 351- 363.
doi: 10.3321/j.issn:1005-0094.2003.05.001
7 ZAVALETA E S , PASARI J R , HULVEY K B , et al. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (4): 1443- 1446.
doi: 10.1073/pnas.0906829107
8 徐炜, 马志远, 井新, 等. 生物多样性与生态系统多功能性:进展与展望[J]. 生物多样性, 2016, 24 (1): 59- 75.
XU Wei , MA Zhiyuan , JING Xin , et al. Biodiversity and ecosystem multifunctionality: advances and perspectives[J]. Biodiversity Science, 2016, 24 (1): 59- 75.
9 HECTOR A , BAGCHI R . Biodiversity and ecosystem multifunctionality[J]. Nature, 2007, 448 (7150): 188- 190.
doi: 10.1038/nature05947
10 LEFCHECK J S , BYRNES J E K , ISBELL F , et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats[J]. Nature Communications, 2015, 6 (6939): 1- 7.
11 ISBELL F , CALCAGNO V , HECTOR A , et al. High plant diversity is needed to maintain ecosystem services[J]. Nature, 2011, 477 (7363): 199- 202.
doi: 10.1038/nature10282
12 SOLIVERES S , VAN DER PLAS F , MANNING P , et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality[J]. Nature, 2016, 536 (7617): 456- 459.
doi: 10.1038/nature19092
13 熊定鹏, 赵广帅, 武建双, 等. 羌塘高寒草地物种多样性与生态系统多功能关系格局[J]. 生态学报, 2016, 36 (11): 3362- 3371.
XIONG Dingpeng , ZHAO Guangshuai , WU Jianshuang , et al. The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau[J]. Acta Ecologica Sinica, 2016, 36 (11): 3362- 3371.
14 李静鹏, 郑志荣, 赵念席, 等. 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系[J]. 植物生态学报, 2016, 40 (8): 735- 747.
LI Jingpeng , ZHENG Zhirong , ZHAO Nianxi , et al. Relationship between ecosystem multifunctionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing[J]. Chinese Journal of Plant Ecology, 2016, 40 (8): 735- 747.
15 黄小波, 李帅锋, 苏建荣, 等. 云南松天然次生林物种丰富度与生态系统多功能性的关系[J]. 生物多样性, 2017, 25 (11): 1182- 1191.
doi: 10.17520/biods.2017167
HUANG Xiaobo , LI Shuaifeng , SU Jianrong , et al. The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest[J]. Biodiversity Science, 2017, 25 (11): 1182- 1191.
doi: 10.17520/biods.2017167
16 马克平. 生物群落多样性的测度方法:Ⅰα多样性的测度方法(上)[J]. 生物多样性, 1994, 2 (3): 162- 168.
doi: 10.3321/j.issn:1005-0094.1994.03.007
MA Keping . Measurement of biotic community diversity: Ⅰmeasurement of α diversity[J]. Chinese Biodiversity, 1994, 2 (3): 162- 168.
doi: 10.3321/j.issn:1005-0094.1994.03.007
17 MAESTRE F T , QUERO J L , GOTELLI N J , et al. Plant species richness and ecosystem multifunctionality in global drylands[J]. Science, 2012, 335 (6065): 214- 218.
doi: 10.1126/science.1215442
18 JING Xin , SANDERS N J , SHI Y , et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate[J]. Nature Communications, 2015, 6 (8159): 1- 8.
19 DELGADO-BAQUERIZO M , ELDRIDGE D J , OCHOA V , et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe[J]. Ecology Letters, 2017, 20 (10): 1295- 1305.
doi: 10.1111/ele.12826
20 XIE Hongtao , WANG G G , YU Mukui . Ecosystem multifunctionality is highly related to the shelterbelt structure and plant species diversity in mixed shelterbelts of eastern China[J]. Global Ecology and Conservation, 2018, 16 (e00470): 1- 11.
21 CONG Wenfeng , VAN RUIJVEN J , WOPKE V D W , et al. Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil[J]. Soil Biology and Biochemistry, 2015, 80 (2015): 341- 348.
22 WARDLE D A , BARDGETT R D , KLIRONOMOS J N , et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304 (5677): 1629- 1633.
doi: 10.1126/science.1094875
23 WOLTERS V , SILVER W L , BIGNELL D E , et al. Effects of global changes on above-and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning[J]. Bioscience, 2000, 50 (12): 1089- 1098.
doi: 10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;2
[1] 张秀华,齐海鹰,王仁卿,刘建. 山东省自然保护区植物多样性研究[J]. 《山东大学学报(理学版)》, 2019, 54(7): 1-10.
[2] 李德利,任昭杰,燕丽梅,卞新玉,赵遵田. 山东省丛藓科苔藓植物研究[J]. 山东大学学报(理学版), 2016, 51(3): 11-18.
[3] 袁瑞强,刘贯群,张贤良,高会旺 . 黄河三角洲浅层地下水中氢氧同位素的特征[J]. J4, 2006, 41(5): 138-143 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .
[2] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28 -35 .
[3] 刘明军 修黎明 李金屏 彭喜元. 基于多表达式编程与频率等高线相结合的结构裂纹检测[J]. J4, 2009, 44(9): 22 -27 .
[4] 史爱玲1,马明2*,郑莹2. 齐次泊松响应的客户寿命值及性质[J]. 山东大学学报(理学版), 2014, 49(03): 96 -100 .
[5] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[6] 许传轲 陈月辉 赵亚欧. 基于改进伪氨基酸组成的蛋白质相互作用预测[J]. J4, 2009, 44(9): 17 -21 .
[7] 马明. δ冲击模型寿命分布的积分计算及M函数的性质[J]. J4, 2008, 43(12): 15 -19 .
[8] 张芳娟 庞永锋 张建华 朱新宏 吉国兴.
因子von Neumann代数上Lie-*导子
[J]. J4, 2010, 45(2): 58 -60 .
[9] 王芳 郭华平 牛常勇 范明. 一种基于EVS相似度的邮件社区聚类方法[J]. J4, 2010, 45(3): 34 -40 .
[10] 赵霞 . 带有确定投资回报的经典风险过程下的破产时罚金折现期望[J]. J4, 2006, 41(5): 63 -67 .