您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (8): 1-5.doi: 10.6040/j.issn.1671-9352.0.2019.869

• •    

关于余模范畴中的挠自由类与覆盖类

李园,姚海楼*   

  1. 北京工业大学应用数理学院, 北京 100124
  • 发布日期:2020-07-14
  • 作者简介:李园(1986— ),女,博士研究生,研究方向为代数表示论、同调代数、余代数. E-mail:yuanlimath@foxmail.com*通信作者简介:姚海楼(1963— ),男,博士,教授,博士生导师,研究方向为代数表示论. E-mail:yaohl@bjut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11671126)

On torsion free class and cover class in category of comodules

LI Yuan, YAO Hai-lou*   

  1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • Published:2020-07-14

摘要: 对于一个余代数,首先引入了余模的(预)覆盖的概念并给出关于它的一些性质;然后,引入了极大倾斜余模和覆盖余模的概念,并证明倾斜挠自由类和极大倾斜余模之间存在一个双射;最后,得到了在余代数中当倾斜挠自由类是覆盖类时,它是由覆盖余模唯一表示的。

关键词: 覆盖类, 极大倾斜, 挠自由类, 覆盖余模

Abstract: For a coalgebra, the concept of(pre)covers for comodules is first introduced and some properties about them are given. Then, the concepts of maximal tilting comodules and cover comodules are given, and the existence of a bijection between the tilting torsion free classes and the maximal tilting comodules is proved. Finally, when the tilting torsion free class is a cover class, whose unique representation by cover comodules over a coalgebra is obtained.

Key words: cover class, maximal tilting, torsion free class, cover comodule

中图分类号: 

  • O153.3
[1] BRENNER S, BUTLER M. Generalnizations of the Bernstein-Gelfand-Ponomarev reflections fuctors[M] // Representation Theory Ⅱ. Lecture Notes in Mathematics, Vol. 832. Berlin: Springer, 1980: 103-169.
[2] HAPPEL D, RINGEL C M. Tilted algebras[J]. Trans Amer Math Soc, 1982, 274:399-443.
[3] COLPI R, TONOLO A, TRLIFAJ J. Partial cotilting modules and the lattices induced by them[J]. Comm Algebra, 1997, 25(10):3225-3237.
[4] HÜGEL L. Tilting preenvelopes and cotilting precovers[J]. Algebras and Representation Theory, 2001, 4:155-170.
[5] DOI Y. Homological coalgebra[J]. J Math Soc Japan, 1981, 33(1):31-50.
[6] SIMSON D. Hom-computable coalgebras, a composition factors matrix and an Euler bilinear form of an Euler coalgebra[J]. J Algebra, 2007, 315(1):42-75.
[7] SIMSON D. Cotilted coalgebras and tame comodule type[J]. Arab J Sci Eng, 2008, 33(2):421-445.
[8] SIMSON D. Coalgebras, comodules, pseudocompact algebras and tame comodule comodule type[J]. Colloq Math, 2001, 90(1):101-150.
[9] CHIN W, SIMSON D. Coxeter transformation and inverses of Cartan matrices for coalgebras[J]. J Algebra, 2010, 324(9):2223-2248.
[10] CHIN W. A brief introduction to coalgebra representation theory[J]. Lect Notes Pure Appl Math, 2004, 237:109-131.
[11] LIN B I-P. Semiperfect coalgebras[J]. J Algebra, 1977, 49(2):357-373.
[12] WANG M Y. Tilting comodules over semi-perfect coalgebras[J]. Algebra Colloq, 1999, 6(4):461-472.
[1] 丰 晓,张顺华 . τ-平坦试验模与τ-平坦覆盖[J]. J4, 2007, 42(1): 31-34 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!