您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (7): 32-37.doi: 10.6040/j.issn.1671-9352.0.2020.100

• • 上一篇    

因子von Neumann代数上ξ-斜Jordan可导映射的一个刻画

张芳娟   

  1. 西安邮电大学理学院, 陕西 西安 710121
  • 发布日期:2020-07-08
  • 作者简介:张芳娟(1976— ), 女, 博士, 副教授, 研究方向为算子代数. E-mail:zhfj888@126.com
  • 基金资助:
    国家自然科学基金资助项目(11601420);陕西省自然科学基础研究计划资助项目(2018JM1053)

A characterization of ξ-skew Jordan derivable mappings on factor von Neumann algebras

ZHANG Fang-juan   

  1. School of Science, Xian University of Posts and Telecommunications, Xian 710121, Shaanxi, China
  • Published:2020-07-08

摘要: 设R是维数大于1的因子von Neumann代数。对于给定的复数ξ且ξ≠0,如果映射δ:R→R满足对所有A,B∈R,有δ((A·B)ξ)=(δ(A)·B)ξ+(A·δ(B))ξ,那么δ是可加的*-导子且满足δ(ξA)=ξδ(A)。 特别地,若von Neumann代数R是无限的Ⅰ型因子,给出了δ的具体刻画。

关键词: ξ-斜Jordan可导映射, von Neumann代数, *-导子

Abstract: Let R be a factor von Neumann algebra with dim R>1. For given complex number ξ and ξ ≠0, if a map δ:R→R satisfies δ((A·B)ξ)=(δ(A)·B)ξ+(A·δ(B))ξ for all A,B∈R, δ is an additive *-derivation and δ(ξA)=ξδ(A). In particular, if the von Neumann algebra R is infinite type Ⅰ factors, a concrete characterization of δ is given.

Key words: ξ-skew Jordan derivable mapping, von Neumann algebra, *-derivation

中图分类号: 

  • O177.1
[1] QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products[J]. Linear Algebra and its Applications, 2011, 434(3):669-682.
[2] QI Xiaofei. Characterizing Lie(ξ-Lie)derivations on triangular algebras by local actions[J]. Electronic Journal of Linear Algebra, 2013, 26(1):816-835.
[3] ZHANG Fangjuan. Nonlinear skew Jordan derivable maps on factor von Neumann algebras[J]. Linear and Multilinear Algebra, 2016, 64(10):2090-2103.
[4] YU Weiyan, ZHANG Jianhua. Nonlinear *-Lie derivations on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2012, 437(8):1979-1991.
[5] ŠEMRL P. Additive derivations of some operator algebras[J]. Illinois Journal of Mathematics, 1991, 35(2):234-240.
[6] ŠEMRL P. Jordan *-derivations of standard operator algebras[J]. Proceeding of the American Mathematical Society, 1994, 120(2):515-518.
[7] 梁耀仙, 张建华. 因子von Neumann代数上的非线性*ξ-Lie可导映射[J]. 数学进展, 2018, 47(6):913-922. LIANG Yaoxian, ZHANG Jianhua. Nonlinear *ξ-Lie derivable mappings on factor von Neumann algebras[J]. Advances in Mathematics, 2018, 47(6):913-922.
[8] ZHANG Fangjuan, QI Xiaofei, ZHANG Jianhua. Nonlinear *-Lie higher derivations on factor von Neumann algebras[J]. Bulletin of the Iranian Mathematical Society, 2016, 42(3):659-678.
[9] 张芳娟. 素*-环上非线性保XY-ξYX*积[J]. 数学学报, 2014, 57(4):775-784. ZHANG Fangjuan. Nonlinear preserving product XY-ξYX* on prime *-ring[J]. Acta Mathematica Sinica Chinese Series, 2014, 57(4):775-784.
[1] 张芳娟 庞永锋 张建华 朱新宏 吉国兴.
因子von Neumann代数上Lie-*导子
[J]. J4, 2010, 45(2): 58-60.
[2] 崔云丽 张建华. 因子von Neumann代数上的多项式零点保持线性映射[J]. J4, 2009, 44(10): 48-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!