《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (7): 32-37.doi: 10.6040/j.issn.1671-9352.0.2020.100
• • 上一篇
张芳娟
ZHANG Fang-juan
摘要: 设R是维数大于1的因子von Neumann代数。对于给定的复数ξ且ξ≠0,如果映射δ:R→R满足对所有A,B∈R,有δ((A·B)ξ)=(δ(A)·B)ξ+(A·δ(B))ξ,那么δ是可加的*-导子且满足δ(ξA)=ξδ(A)。 特别地,若von Neumann代数R是无限的Ⅰ型因子,给出了δ的具体刻画。
中图分类号:
[1] QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products[J]. Linear Algebra and its Applications, 2011, 434(3):669-682. [2] QI Xiaofei. Characterizing Lie(ξ-Lie)derivations on triangular algebras by local actions[J]. Electronic Journal of Linear Algebra, 2013, 26(1):816-835. [3] ZHANG Fangjuan. Nonlinear skew Jordan derivable maps on factor von Neumann algebras[J]. Linear and Multilinear Algebra, 2016, 64(10):2090-2103. [4] YU Weiyan, ZHANG Jianhua. Nonlinear *-Lie derivations on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2012, 437(8):1979-1991. [5] ŠEMRL P. Additive derivations of some operator algebras[J]. Illinois Journal of Mathematics, 1991, 35(2):234-240. [6] ŠEMRL P. Jordan *-derivations of standard operator algebras[J]. Proceeding of the American Mathematical Society, 1994, 120(2):515-518. [7] 梁耀仙, 张建华. 因子von Neumann代数上的非线性*ξ-Lie可导映射[J]. 数学进展, 2018, 47(6):913-922. LIANG Yaoxian, ZHANG Jianhua. Nonlinear *ξ-Lie derivable mappings on factor von Neumann algebras[J]. Advances in Mathematics, 2018, 47(6):913-922. [8] ZHANG Fangjuan, QI Xiaofei, ZHANG Jianhua. Nonlinear *-Lie higher derivations on factor von Neumann algebras[J]. Bulletin of the Iranian Mathematical Society, 2016, 42(3):659-678. [9] 张芳娟. 素*-环上非线性保XY-ξYX*积[J]. 数学学报, 2014, 57(4):775-784. ZHANG Fangjuan. Nonlinear preserving product XY-ξYX* on prime *-ring[J]. Acta Mathematica Sinica Chinese Series, 2014, 57(4):775-784. |
[1] | 张芳娟 庞永锋 张建华 朱新宏 吉国兴. 因子von Neumann代数上Lie-*导子[J]. J4, 2010, 45(2): 58-60. |
[2] | 崔云丽 张建华. 因子von Neumann代数上的多项式零点保持线性映射[J]. J4, 2009, 44(10): 48-50. |
|