您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (12): 69-75.doi: 10.6040/j.issn.1671-9352.0.2020.294

• • 上一篇    

高维刚性子范畴和t-结构

杨婷,谢云丽*   

  1. 西南交通大学数学学院, 四川 成都 611756
  • 发布日期:2020-12-01
  • 作者简介:杨婷(1996— ),女,硕士研究生,研究方向为代数表示论. E-mail:1914957652@qq.com*通信作者简介:谢云丽(1979— ),女,博士,讲师,硕士生导师,研究方向为代数表示论. E-mail:xieyunli@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11701474)

Higher rigid subcategories and t-structures

YANG Ting, XIE Yun-li*   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan, China
  • Published:2020-12-01

摘要: 设D是三角范畴,A是D -容许的阿贝尔子范畴,证明了A的高维刚性子范畴在某些条件下诱导了D中的一个t-结构,并且该t-结构的心恰好就是A。

关键词: 三角范畴, d-刚性子范畴, t-结构

Abstract: Let D be a triangulated category and A a D -admissible abelian subcategory of D. This paper shows that under some conditions a higher rigid subcategory of A induces a t-structure on D whose heart is just A.

Key words: triangulated category, d-rigid subcategory, t-structure

中图分类号: 

  • O154.1
[1] HAPPEL D, REITEN I, SMALØ S O. Tilting in abelian categories and quasitilted algebras[J]. Memoirs of the American Mathematical Society, 1996, 120(575):1-88.
[2] HOSHINO M, KATO Y, MIYACHI J. On t-structures and torsion theories induced by compact objects[J]. Journal of Pure and Applied Algebra, 2002, 167(1):15-35.
[3] IYAMA O, YANG D. Silting reduction and Calabi-Yau reduction of triangulated categories[J]. Transactions of the American Mathematical Society, 2018, 370(11):7861-7898.
[4] BAZZONI S. The t-structure induced by an n-tilting module[J]. Transactions of the American Mathematical Society, 2019, 371(9):6309-6340.
[5] 谢云丽. 由生成子范畴导出的t-结构[J]. 四川大学学报(自然科学版),2008,45(5):1037-1042. XIE Yunli. t-Structure arising from a generating subcategory[J]. Journal of Sichuan University(Natural Science Edition), 2008, 45(5):1037-1042.
[6] AUSLANDER M, SMALØ S O. Almost split sequences in subcategories[J]. Journal of Algebra, 1981, 69(2):426-454.
[7] JASSO G, KÜLSHAMMER J, PSAROUDAKIS C, et al. Higher Nakayama algebras I: construction[J]. Advances in Mathematics, 2019, 351:1139-1200.
[8] IYAMA O. Auslander correspondence[J]. Advances in Mathematics, 2007, 210(1):51-82.
[9] IYAMA O. Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories[J]. Advances in Mathematics, 2007, 210(1):22-50.
[10] JØRGENSEN P. Torsion classes and t-structures in higher homological algebra[J]. International Mathematics Research Notices, 2016, 2016(13):3880-3905.
[11] NEEMAN A. Triangulated categories[M]. Princeton: Princeton University Press, 2001.
[12] KELLER B, VOSSIECK D. Aisles in derived categories[J]. Bull Soc Math Belg Sér A, 1988, 40(2):239-253.
[1] 郑敏,陈清华. 三角范畴上t-结构的Ki-群[J]. 《山东大学学报(理学版)》, 2020, 55(8): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!