《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (3): 37-43.doi: 10.6040/j.issn.1671-9352.0.2020.360
Hai-hui WANG(),Lu-yao ZHAO,Ping LI*()
摘要:
在max-*复合推理下引入了非确定模糊有穷自动机的概念, 其中*是t-模运算。为了比较2个非确定模糊有穷自动机的行为, 借助于[0, 1]上的一个实数ε, 定义了2种ε-语言逼近, 讨论了它们之间的关系。证明了非确定模糊有穷自动机和模糊有穷自动机之间是0-弱语言逼近的, 即二者可以接受相同的模糊语言。此外, 还讨论了2种ε-语言逼近的一些代数性质, 特别地给出ε-语言逼近在并运算、*运算以及连接运算下的性质。最后, 分析了ε-语言逼近的鲁棒性。
中图分类号:
1 |
CAO Yongzhi , YING Mingsheng . Supervisory control of fuzzy discrete event systems[J]. IEEE Transactions on Systems, Man and Cybernetics Part B, 2005, 35 (2): 366- 371.
doi: 10.1109/TSMCB.2004.842252 |
2 |
DENG Weilin , QIU Daowen . Supervisory control of fuzzy discrete-event systems for simulation equivalence[J]. IEEE Transactions on Fuzzy Systems, 2015, 23 (1): 178- 192.
doi: 10.1109/TFUZZ.2014.2310466 |
3 |
LIN Feng , YING Hao . Modeling and control of fuzzy discrete event systems[J]. IEEE Transactions on Systems, Man and Cybernetics Part B, 2002, 32 (4): 408- 415.
doi: 10.1109/TSMCB.2002.1018761 |
4 | WU Hengyang , DENG Yuxin . Logical characterizations of simulation and bisimulation for fuzzy transition systems[J]. Fuzzy Sets and Systems, 2016, 301 (15): 19- 36. |
5 | 王国俊. 非经典数理逻辑与近似推理[M]. 北京: 科学出版社, 2008: 163- 166. |
WANG Guojun . Non-classical mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2008: 163- 166. | |
6 | 李永明, 李平. 模糊计算理论[M]. 北京: 科学出版社, 2016: 151- 175. |
LI Yongming , LI Ping . Fuzzy computing theory[M]. Beijing: Science Press, 2016: 151- 175. | |
7 | HOPCROFT J E , ULLMAN J D . Introduction to automata theory, languages and computation[M]. New York: Addison-Wesley, 1979. |
8 | 蒋宗礼, 姜守旭. 形式语言与自动机理论[M]. 北京: 清华大学出版社, 2013. |
JIANG Zongli , JIANG Shouxu . Formal languages and automata[M]. Beijing: Tsinghua University Press, 2013. | |
9 | MICHAEL S . Introduction to the theory of computation[M]. Boston: Cengage Learning, 2012. |
10 | WEE W G . On generalizations of adaptive algorithms and application of the fuzzy sets concept to pattern classification[M]. West Lafayette: Purdue University, 1967. |
11 |
LI Ping , LI Yongming . Algebraic properties of LA-languages[J]. Information Sciences, 2006, 176 (21): 3232- 3255.
doi: 10.1016/j.ins.2005.10.003 |
12 |
LI Yongming , PEDRYCZ W . Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids[J]. Fuzzy Sets and Systems, 2005, 156 (1): 68- 92.
doi: 10.1016/j.fss.2005.04.004 |
13 |
彭家寅. 基于完备剩余格值逻辑的自动机与文法理论[J]. 模式识别与人工智能, 2011, 24 (5): 610- 618.
doi: 10.3969/j.issn.1003-6059.2011.05.003 |
PENG Jiayin . Automata and grammars theory based on complete residuated lattice-valued logic[J]. Pattern Recognition and Artificial Intelligence, 2011, 24 (5): 610- 618.
doi: 10.3969/j.issn.1003-6059.2011.05.003 |
|
14 | QIU Daowen . Automata theory based on completed residuated lattice-valued logic(I)[J]. Science in China (Series F: Information Sciences), 2001, 44 (6): 419- 429. |
15 | QIU Daowen . Automata theory based on completed residuated lattice-valued logic(Ⅱ)[J]. Science in China (Series F: Information Sciences), 2002, 45 (6): 442- 452. |
16 |
YING Mingsheng . A theory of computation based on quantum logic(I)[J]. Theoretical Computer Science, 2005, 344, 134- 207.
doi: 10.1016/j.tcs.2005.04.001 |
17 |
CAO Yongzhi , EZAWA Y . Nondeterministic fuzzy automata[J]. Information Sciences, 2012, 191, 86- 97.
doi: 10.1016/j.ins.2011.12.024 |
18 |
CAO Yongzhi , SUN Sherry X , WANG Huaiqing , et al. A behavioral distance for fuzzy-transition systems[J]. IEEE Transactions on Fuzzy Systems, 2013, 21 (4): 735- 747.
doi: 10.1109/TFUZZ.2012.2230177 |
19 |
PAN Haiyu , LI Yongming , CAO Yongzhi , et al. Nondeterministic fuzzy automata with membership values in complete residuated lattices[J]. International Journal of Approximate Reasoning, 2017, 82, 22- 38.
doi: 10.1016/j.ijar.2016.11.020 |
20 |
LI Yongming . Approximation and robustness of fuzzy finite automata[J]. International Journal of Approximate Reasoning, 2008, 47 (2): 247- 257.
doi: 10.1016/j.ijar.2007.05.004 |
21 |
WANG Yongbing , LI Yongming . Approximation of fuzzy context-free grammars[J]. Information Sciences, 2009, 179 (22): 3920- 3929.
doi: 10.1016/j.ins.2009.06.028 |
22 | HÁJEK P . Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publisher, 1998. |
23 | KLEMENT E P , PAP E . Triangular norms[M]. Dordrecht: Kluwer Academic Publisher, 2000: 363- 369. |
24 |
LI Yongming , LI Dechao , PEDRYCZ W , et al. An approach to measure the robustness of fuzzy reasoning[J]. International Journal of Intelligent Systems, 2005, 20 (4): 393- 413.
doi: 10.1002/int.20072 |
25 |
BERNSTEIN E , VAZIRANI U . Quantum complexity theory[J]. SIAM Journal of Computing, 1997, 26 (5): 1411- 1473.
doi: 10.1137/S0097539796300921 |
26 |
PAN Haiyu , CAO Yongzhi , ZHANG Min , et al. Simulation for lattice-valued doubly labeled transition systems[J]. International Journal of Approximate Reasoning, 2014, 55 (3): 797- 811.
doi: 10.1016/j.ijar.2013.11.009 |
[1] | 王晓霞,曹怀信,查嫽. 量子信道对广义纠缠鲁棒性的影响[J]. 山东大学学报(理学版), 2016, 51(11): 127-134. |
|