《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 8-13.doi: 10.6040/j.issn.1671-9352.0.2020.399
• • 上一篇
刘鑫,吴珍凤*,杨南迎
LIU Xin, WU Zhen-feng*, YANG Nan-ying
摘要: 令G是一个有限群。群G的子群S称为在G中是m-S-置换的,如果存在着G的模子群A和S-置换子群B使得S=〈A,B〉。群G的子群H称为在G中是m-S-可补的,如果存在着G的m-S-置换子群S和G的子群T使得G=HT且H∩T≤S≤H。通过研究m-S-可补子群对有限群结构的影响,得到了有限群的p-幂零性和超可解性的一些新的判别准则,并推广了一些已得到的结果。
中图分类号:
[1] WANG Yanming. Finite groups with some subgroup of Sylow subgroups c-supplemented[J]. J Algebra, 2000, 224:467-478. [2] SKIBA A N. On weakly s-permutable subgroups of finite groups[J]. J Algebra, 2007, 315:192-209. [3] BUCKLEY J. Finite groups whose minimal subgroups are normal[J]. Math Z, 1970, 116:15-17. [4] WEI Xianbiao. On weakly m-σ-permutable subgroups of finite groups[J]. Comm Algebra, 2019, 47(3):945-956. [5] MONAKHOV V S, SOKHOR I L. Finite groups with abnormal or formation subnormal primary subgroups[J]. Comm Algebra, 2019, 47(10):3941-3949. [6] CHEN Ruifang, LI Rui, ZHAO Xianhe. Primary subgroups and the structure of finite groups[J]. Comm Algebra, 2020, 48(10):4436-4443. [7] LI Changwen, QIAO Shouhong. On weakly H-subgroups and p-nilpotency of finite groups[J]. J Algebra Appl, 2017, 16(1), 1750042. [8] GUO Wenbin, SKIBA A N. Groups with maximal subgroups of Sylow subgroups σ-permutably embedded[J]. J Group Theory, 2017, 20(1):169-183. [9] HU Bin, HUANG Jianhong, SKIBA A N. On weakly σ-quasinormal subgroups of finite groups[J]. Publ Math Debrecen, 2018, 92(1-2):201-216. [10] YANG Nanying, ADARCHENKO N M. On m-S-supplemented subgroups of finite groups[J]. Comm Algebra, 2019, 47(7):2742-2752. [11] DOERK K, HAWKES T. Finite soluble groups[M]. Berlin: Walter de Gruyter, 1992. [12] GUO Wenbin. Structure theory for canonical classes of finite groups[M]. Berlin: Springer, 2015. [13] SCHMIDT R. Subgroup lattices of groups[M]. Berlin: Walter de Gruyter, 1994. [14] WIELANDT H. Subnormal subgroups and permutation groups[M] //Lectures given at the Ohio State University. Columbus: Springer, 1971. [15] KEGEL O H. Sylow-gruppen und subnormalteiler endlicher gruppen[J]. Math Z,1962, 78:205-221. [16] SCHMID P. Subgroups permutable with all sylow subgroups[J]. J Algebra, 1998, 82:285-293. [17] WEINSTEIN M. Between nilpotent and solvable[M]. Washington: Polygonal Publishing House, 1982. [18] GUO Wenbin. The theory of classes of groups[M]. Beijing: Science Press-Kluwer Academic Publishers, 2000. [19] LI Yangming, SU Ning, WANG Yanming. Complemented subgroups and the structure of finite groups[J]. Monatsh Math, 2013, 173(3):361-370. [20] ASAAD M. On c-supplemented subgroups of finite groups[J]. J Algebra, 2012, 362:1-11. [21] QIAO Shouhong.Weakly s-supplemented subgroups and p-nilpotency of finite groups[J]. Indian J Pure Appl Math, 2013, 44(6):795-808. |
[1] | 陈松良. 具有非交换Sylow子群的p2q3阶群的构造[J]. 山东大学学报(理学版), 2015, 50(12): 93-97. |
[2] | 陈松良,李惊雷,欧阳建新. 论p3q阶群的构造[J]. J4, 2013, 48(2): 27-31. |
[3] | 刘晓蕾. 关于E.Alemany等人的一个定理的一个注记[J]. J4, 2012, 47(10): 7-13. |
[4] | 刘晓蕾 王燕鸣. 有限群中的q-补及其应用[J]. J4, 2009, 44(10): 87-90. |
[5] | 刘晓蕾 . 关于有限群的c-正规性的几点注记[J]. J4, 2008, 43(10): 18-20 . |
|