《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 1-7.doi: 10.6040/j.issn.1671-9352.0.2020.453
• •
程彦亮,邵勇*
CHENG Yan-liang, SHAO Yong*
摘要: 给出了由半环的格林关系所确定的开同余的刻画与性质。通过这些开同余,得到了系列半环类,证明了这些半环类均是半环簇,并揭示了这些半环簇之间的关系。通过对半环簇的子簇格上的开算子的探究,得到了乘法幂等半环簇的子簇格到开簇格的直积上的序嵌入定理。
中图分类号:
[1] 郭聿琦,宫春梅,任学明.关于半群上格林关系的一个来龙去脉的综述[J].山东大学学报(理学版), 2010,45(8):1-18. GUO Yuqi, GONG Chunmei, REN Xueming. A survey on the origin and developments of Greens relations on semigroups[J]. Journal of Shandong University(Natural Science), 2010, 45(8):1-18. [2] HOWIE J M. Fundamentals of semigroup theory[M] //Algebra Colloquium. London: Clarendon Press, 1995. [3] ZHAO X Z, SHUM K P, GUO Y Q. L -subvarieties of variety of idempotent semirings[J]. Algebra Universalis, Série I, 2001, 46(1-2):75-96. [4] ZHAO X Z, GUO Y Q, SHUM K P. D -subvarieties of variety of idempotent semirings[J]. Algebra Colloquium, 2002, 9:15-28. [5] PASTIJN F. Weak commutativity in idempotent semirings[J]. Semigroup Forum, 2006, 72(2):283-311. [6] PASTIJN F, GUO Y Q. The lattice of idempotent distributive semirings varieties[J]. Sci China(Ser A), 1999, 42(8):785-804. [7] PASTIJN F, ROMANOVSKA A. Idempotent distributive semirings I[J]. Acta Sci Math, 1982, 44:239-253 [8] PASTIJN F, ZHAO X Z. Varieties of idempotent semirings with commutative addition[J]. Algebra Universalis, 2005, 54(3):301-321. [9] SEN M K, GUO Y Q, SHUM K P. A class of idempotent semirings[J]. Semigroup Forum,2000, 60(3):351-367. [10] WANG Z, ZHOU Y, GUO Y Q. A note on band semirings[J]. Semigroup Forum, 2005, 71(3):439-442. [11] GRILLET M P. Greens relations in a semiring[J]. Portugaliae Mathematica, 1970, 29(4):181-195. [12] 秦官伟,任苗苗,邵勇. 关于半环上格林关系的开同余[J].纯粹数学与应用数学, 2012, 28(5):668-675. QIN Guanwei, REN Miaomiao, SHAO Yong. On congruence openings of Greens relations on a semiring[J]. Pure and Applied Mathematics, 2012, 28(5):668-675. [13] DAMLJANOVIC N, CIRIC M, BOGDANOVIC S. Congruence openings of additive Greens relations on a semigroup[J]. Semigroup Forum, 2011, 82(3):437-454. [14] CHENG Y L, SHAO Y. Semiring varieties related to multiplicative Greens relations on a semiring[J]. Semigroup Forum, 2020, 101(3):571-584. [15] FUCHS L. On subdirect unions I[J]. Acta Mathematica Hungarica, 1952, 3:103-120. |
[1] | 宫春梅,王惠,吴丹丹. 超富足半群上(*)-好同余研究[J]. 《山东大学学报(理学版)》, 2020, 55(8): 98-101. |
[2] | 许格妮, 李永明. 转移函数保半环赋值代数轮廓解的条件[J]. 山东大学学报(理学版), 2015, 50(08): 51-56. |
[3] | 张后俊, 储茂权. 交换半环上半线性空间的维数[J]. 山东大学学报(理学版), 2015, 50(06): 45-52. |
[4] | 杨闻起. IS-代数的伴侣半环[J]. J4, 2011, 46(12): 66-69. |
[5] | 郭聿琦1,宫春梅2,任学明2. 关于半群上格林关系的一个来龙去脉的综述[J]. J4, 2010, 45(8): 1-18. |
[6] | 王凌云. 半环上的分配格同余[J]. J4, 2009, 44(9): 63-65. |
[7] | 李 宁 . I-fuzzy拓扑空间中的准连续映射[J]. J4, 2007, 42(12): 42-45 . |
[8] | 刘红星 . 商半环的强分配格[J]. J4, 2006, 41(6): 43-45 . |
[9] | 刘红星 . 半环的局部化[J]. J4, 2006, 41(2): 31-33 . |
|