《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 42-46.doi: 10.6040/j.issn.1671-9352.0.2020.542
• • 上一篇
姜瑞廷1,翟成波2*
JIANG Rui-ting1, ZHAI Cheng-bo2*
摘要: 考虑一类带有Rellich位势的临界双调和方程Δ2u-μu/(|x|4)=(|u|2*(s)-2u)/(|x|s)+λf(x,u),运用山路引理得到非平凡解的存在性。
中图分类号:
[1] RELLICH F, BERKOWITZ J. Perturbation theory of eigenvalue problems[M]. New York: Gordon and Breach, 1969. [2] JANNELLI E, LOIUDICE A. Critical polyharmonic problems with singular nonlinearities[J]. Nonlinear Analysis, 2014, 110(1):77-96. [3] JANNELLI E. Critical behavior for the polyharmonic operator with Hardy potential[J]. Nonlinear Analysis: Theory, Method and Application, 2015, 119(1):443-456. [4] KANG Dongsheng, XU Liangshun. Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials[J]. Journal of Mathematical Analysis and Applications, 2017, 455(2):1365-1382. [5] 郭玉霞, 唐仲伟, 汪路顺. 带深井位势双调和方程的解[J]. 中国科学:数学, 2019, 49(1):21-38. GUO Yuxia, TANG Zhongwei, WANG Lushun. Solutions of biharmonic equations with steep potential wells[J]. Scientia Sinica Mathematics, 2019, 49(1):21-38. [6] BRÉZIS H, NIRENBERG L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J]. Communications on Pure and Applied Mathematics, 1983, 36(4):437-477. |
[1] | 陈志辉,王真真,程永宽*. 拟线性薛定谔方程的孤立解[J]. 山东大学学报(理学版), 2014, 49(2): 58-62. |
[2] | 程永宽,姚仰新,韩亚蝶. 一类含Hardy位势的椭圆方程解的存在性[J]. J4, 2013, 48(2): 62-66. |
|