您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 42-46.doi: 10.6040/j.issn.1671-9352.0.2020.542

• • 上一篇    

带有Rellich位势的临界双调和方程解的存在性

姜瑞廷1,翟成波2*   

  1. 1.山西财经大学应用数学学院, 山西 太原 030006;2.山西大学数学科学学院, 山西 太原 030006
  • 发布日期:2021-06-03
  • 作者简介:姜瑞廷(1990— ), 女, 博士, 讲师, 研究方向为非线性分析及其应用. E-mail:rtjiang@sxufe.edu.cn*通信作者简介:翟成波(1977— ), 男, 教授, 研究方向为非线性分析与微分方程. E-mail:cbzhai@sxu.edu.cn
  • 基金资助:
    山西省高等学校科技创新项目资助项目(2020L0260);山西财经大学青年基金资助项目(QN-202020)

Existence of solution for the critical biharmonic equations involving Rellich potentials

JIANG Rui-ting1, ZHAI Cheng-bo2*   

  1. 1. College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China;
    2. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
  • Published:2021-06-03

摘要: 考虑一类带有Rellich位势的临界双调和方程Δ2u-μu/(|x|4)=(|u|2*(s)-2u)/(|x|s)+λf(x,u),运用山路引理得到非平凡解的存在性

关键词: Rellich 位势, Rellich-Sobolev临界指数, 局部Palais-Smale条件, 山路引理

Abstract: This paper considers a class of critical biharmonic equations involving Rellich potentials Δ2u-μu/(|x|4)=(|u|2*(s)-2u)/(|x|s)+λf(x,u)in a bounded domain. By mountain pass theorem, the existence of at least a nontrivial solution is obtained.

Key words: Rellich potential, Rellich-Sobolev critical exponent, local Palais-Smale condition, mountain pass theorem

中图分类号: 

  • O175.25
[1] RELLICH F, BERKOWITZ J. Perturbation theory of eigenvalue problems[M]. New York: Gordon and Breach, 1969.
[2] JANNELLI E, LOIUDICE A. Critical polyharmonic problems with singular nonlinearities[J]. Nonlinear Analysis, 2014, 110(1):77-96.
[3] JANNELLI E. Critical behavior for the polyharmonic operator with Hardy potential[J]. Nonlinear Analysis: Theory, Method and Application, 2015, 119(1):443-456.
[4] KANG Dongsheng, XU Liangshun. Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials[J]. Journal of Mathematical Analysis and Applications, 2017, 455(2):1365-1382.
[5] 郭玉霞, 唐仲伟, 汪路顺. 带深井位势双调和方程的解[J]. 中国科学:数学, 2019, 49(1):21-38. GUO Yuxia, TANG Zhongwei, WANG Lushun. Solutions of biharmonic equations with steep potential wells[J]. Scientia Sinica Mathematics, 2019, 49(1):21-38.
[6] BRÉZIS H, NIRENBERG L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J]. Communications on Pure and Applied Mathematics, 1983, 36(4):437-477.
[1] 陈志辉,王真真,程永宽*. 拟线性薛定谔方程的孤立解[J]. 山东大学学报(理学版), 2014, 49(2): 58-62.
[2] 程永宽,姚仰新,韩亚蝶. 一类含Hardy位势的椭圆方程解的存在性[J]. J4, 2013, 48(2): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!