您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 103-110.doi: 10.6040/j.issn.1671-9352.0.2020.682

• • 上一篇    

求解四元数矩阵方程的矩阵半张量积方法

丁文旭,李莹*,王栋,赵建立   

  1. 聊城大学数学科学学院, 山东 聊城 252000
  • 发布日期:2021-06-03
  • 作者简介:丁文旭(1998— ),男,硕士研究生,研究方向为线性系统理论. E-mail:525046193@qq.com*通信作者简介:李莹(1974— ),女,博士,教授, 研究方向为线性系统理论. E-mail:liyingld@163.com
  • 基金资助:
    国家自然科学基金资助项目(11801249);山东省自然科学基金资助项目(ZR2020MA053)

Solutions of the quaternion matrix equation based on semi-tensor product of matrices

DING Wen-xu, LI Ying*, WANG Dong, ZHAO Jian-li   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252000, Shandong, China
  • Published:2021-06-03

摘要: 提出四元数矩阵的一种实向量表示方法,将它应用于四元数矩阵方程的Hermitian和anti-Hermitian解的研究。通过这一实向量表示方法与矩阵半张量积结合,将四元数矩阵方程的求解问题转化成实数域中的相应问题。然后利用四元数Hermitian和anti-Hermitian 矩阵的结构特点,提取解的实向量表示中的有效信息,去除冗余,降维简化了计算的复杂度。该方法适用于具有不同约束条件的相似问题。

关键词: 四元数矩阵方程, 矩阵半张量积, 换位矩阵, 实向量表示, Hermitian(anti-Hermitian)矩阵

Abstract: A new kind of real vector representation of quaternion matrix is proposed which is applied to study the Hermitian or anti-Hermitian solution of the quaternion matrix equation. Combined this real vector representation with semi-tensor product of matrics, the problem of quaternion matrix equation is transformed into the corresponding problem in real number field. And then, by studying the structural characteristics of quaternion Hermitian matrix and anti-Hermitian matrix, the useful information in the real vector representation is extracted and the redundancy is removed, then the original problem is simplified by reducing the dimension. This method can be applied to similar problems with different constraint.

Key words: quaternion matrix equation, semi-tensor product of matrices, swap matrix, real vector representation, Hermitian(anti-Hermitian)matrix

中图分类号: 

  • O241.6
[1] CHENG Daizhan, QI Hongsheng, LI Zhiqiang. Analysis and control of Boolean networks: a semi-tensor product approach[M]. New York: Springer Science Business Media, 2010.
[2] CHENG Daizhan, QI Hongsheng. A linear representation of dynamics of Boolean networks[J]. IEEE Transactions on Automatic Control, 2010, 55(10):2251-2258.
[3] 冯俊娥,贾淼. 混合值逻辑网络的集合稳定[J]. 控制与决策, 2019, 34(2):269-273. FENG June, JIA Miao. Set stability of mix-valued logical networks[J]. Control and Decision, 2019, 34(2):269-273.
[4] JIA Guangyu, Meng Min, FENG June. Function perturbation of mix-valued logical networks with impacts on limit sets[J]. Neuro Computing, 2016, 207:428-436.
[5] CHENG Daizhan, QI Hongsheng, ZHAO Yin. Analysis and control of general logical networks: an algebraic approach[J]. Annual Reviews in Control, 2010, 36(1):11-25.
[6] CHENG Daizhan, XU Xiangru. Bi-decomposition of multi-valued logical functions and its applications[J]. Automatica, 2013, 49(7):1979-1985.
[7] LI Zhiqiang, CHENG Daizhan. Algebraic approach to dynamics of multivalued networks[J]. International Journal of Bifurcation and Chaos, 2010, 20(3):561-582.
[8] QI Hongsheng, CHENG Daizhan. Logic and logic-based control[J]. Journal of Control Theory and Applications, 2008, 6(1):26-36.
[9] WANG Yuzhen, ZHANG Chenghui, LIU Zhenbin. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems[J]. Automatcia, 2012, 48(7):1227-1236.
[10] CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Modeling analysis and control of network evolution games[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415.
[11] CHENG Daizhan, FENG June, LV Hongli. Solving fuzzy relational equations via semi tensor product[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(2):390-396.
[12] GHOUTI L. Robust perceptual color image hashing using quaternion singular value decomposition[C] // 2014 IEEE International Conference on Acoustics: Speech and Signal Processing(ICASSP). Florence: IEEE, 2014: 3794-3798.
[13] FARENICK D R,PIDKOWICH B A F. The spectral theorem in quaternions[J]. Linear Algebra and its Applications, 2003(371):75-102.
[14] JI Ping, WU Hongtao. A closed-form forward kinematics solution for the 6-6p Stewart platform[J]. IEEE Transactions on Robotics and Automation, 2001, 17(4):522-526.
[15] MOXEY C E, SANGWINE S J, ELL T A. Hypercomplex correlation techniques for vector imagines[J]. IEEE Transactions on Social Signal Process, 2003, 51(7):1941-1953.
[16] LIAO Anping, LEI Yuan. Least squares solution with minimum-norm for the matrix equation(AXB,GXH)=(C,D)[J]. Computers Mathematics with Applications, 2005, 50(3/4):539-549.
[17] YUAN Shifang, LIAO Anping, LEI Yuan. Least squares Hermitian solution of the matrix equation(AXB,CXD)=(E,F)with the least norm over the skew field of quaternions[J]. Mathematical and Computer Modelling, 2008, 48(1/2):91-100.
[18] YUAN Shifang, LIAO Anping, WANG Peng. Least squares η-bi-Hermitian problems of the quaternion matrix equation(AXB,CXD)=(E,F)[J]. Linear and Multilinear Algebra, 2014, 63(9):1849-1863.
[19] SHENG Xingping, CHEN Guoliang. A finite iternative method for solving a pair of linear matrix equations(AXB,CXD)=(E,F)[J]. Applied Mathematics and Computation, 2007, 189(2):1350-1358.
[20] CAI Jing, CHEN Guoliang. An iterative algorithm for the least squares bisymmetric solutions of the matrix equations A1XB1=C1A2XB2=C2[J]. Mathematical and Computer Modelling, 2009, 50(7/8):1237-1244.
[21] 王秀平,张凤霞. 四元数矩阵方程(AXB,CXD)=(E,F)的最小范数最小二乘Hermitian解[J]. 纯粹数学与应用数学, 2020, 36(1):105-118. WANG Xiuping, ZHANG Fengxia. The minimal norm least squares Hermitian solution of the quaternion matrix equation(AXB,CXD)=(E,F)[J]. Pure and Applied Mathematics, 2020, 36(1):105-118.
[22] WEI Musheng, LI Ying, ZHANG Fengxia, et al. Quaternion matrix computations[M]. New York: Nova Science Publisher, 2018.
[23] CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Modeling,analysisc and control of networked evolutionary games[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415.
[24] 程代展,夏元清,马宏斌,等. 矩阵代数控制与博弈[M]. 北京:北京理工大学出版社, 2017. CHENG Daizhan, XIA Yuanqing, MA Hongbin, et al. Matrix algebra control and game[M]. Beijing: Beijing Institute of Technology Press, 2017.
[25] 戴华. 矩阵论[M]. 北京:科学出版社,2001. DAI Hua. Matrix theory[M]. Beijing: Science Press, 2001.
[26] 程代展,齐洪胜,贺风华,等.有限集上的映射与动态过程:矩阵半张量积方法[M]. 北京:科学出版社, 2016. CHENG Daizhan, QI Hongsheng, HE Fenghua, et al. Mappings and dynamic systems over finite sets: a semi-tensor product approach[M]. Beijing: Science Press, 2016.
[1] 程代展,赵寅,徐相如. 混合值逻辑及其应用[J]. 山东大学学报(理学版), 2011, 46(10): 32-44.
[2] 凌思涛 程学汉 魏木生. 一般线性四元数矩阵方程的Hermite解[J]. J4, 2008, 43(12): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!