《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 103-110.doi: 10.6040/j.issn.1671-9352.0.2020.682
• • 上一篇
丁文旭,李莹*,王栋,赵建立
DING Wen-xu, LI Ying*, WANG Dong, ZHAO Jian-li
摘要: 提出四元数矩阵的一种实向量表示方法,将它应用于四元数矩阵方程的Hermitian和anti-Hermitian解的研究。通过这一实向量表示方法与矩阵半张量积结合,将四元数矩阵方程的求解问题转化成实数域中的相应问题。然后利用四元数Hermitian和anti-Hermitian 矩阵的结构特点,提取解的实向量表示中的有效信息,去除冗余,降维简化了计算的复杂度。该方法适用于具有不同约束条件的相似问题。
中图分类号:
[1] CHENG Daizhan, QI Hongsheng, LI Zhiqiang. Analysis and control of Boolean networks: a semi-tensor product approach[M]. New York: Springer Science Business Media, 2010. [2] CHENG Daizhan, QI Hongsheng. A linear representation of dynamics of Boolean networks[J]. IEEE Transactions on Automatic Control, 2010, 55(10):2251-2258. [3] 冯俊娥,贾淼. 混合值逻辑网络的集合稳定[J]. 控制与决策, 2019, 34(2):269-273. FENG June, JIA Miao. Set stability of mix-valued logical networks[J]. Control and Decision, 2019, 34(2):269-273. [4] JIA Guangyu, Meng Min, FENG June. Function perturbation of mix-valued logical networks with impacts on limit sets[J]. Neuro Computing, 2016, 207:428-436. [5] CHENG Daizhan, QI Hongsheng, ZHAO Yin. Analysis and control of general logical networks: an algebraic approach[J]. Annual Reviews in Control, 2010, 36(1):11-25. [6] CHENG Daizhan, XU Xiangru. Bi-decomposition of multi-valued logical functions and its applications[J]. Automatica, 2013, 49(7):1979-1985. [7] LI Zhiqiang, CHENG Daizhan. Algebraic approach to dynamics of multivalued networks[J]. International Journal of Bifurcation and Chaos, 2010, 20(3):561-582. [8] QI Hongsheng, CHENG Daizhan. Logic and logic-based control[J]. Journal of Control Theory and Applications, 2008, 6(1):26-36. [9] WANG Yuzhen, ZHANG Chenghui, LIU Zhenbin. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems[J]. Automatcia, 2012, 48(7):1227-1236. [10] CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Modeling analysis and control of network evolution games[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415. [11] CHENG Daizhan, FENG June, LV Hongli. Solving fuzzy relational equations via semi tensor product[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(2):390-396. [12] GHOUTI L. Robust perceptual color image hashing using quaternion singular value decomposition[C] // 2014 IEEE International Conference on Acoustics: Speech and Signal Processing(ICASSP). Florence: IEEE, 2014: 3794-3798. [13] FARENICK D R,PIDKOWICH B A F. The spectral theorem in quaternions[J]. Linear Algebra and its Applications, 2003(371):75-102. [14] JI Ping, WU Hongtao. A closed-form forward kinematics solution for the 6-6p Stewart platform[J]. IEEE Transactions on Robotics and Automation, 2001, 17(4):522-526. [15] MOXEY C E, SANGWINE S J, ELL T A. Hypercomplex correlation techniques for vector imagines[J]. IEEE Transactions on Social Signal Process, 2003, 51(7):1941-1953. [16] LIAO Anping, LEI Yuan. Least squares solution with minimum-norm for the matrix equation(AXB,GXH)=(C,D)[J]. Computers Mathematics with Applications, 2005, 50(3/4):539-549. [17] YUAN Shifang, LIAO Anping, LEI Yuan. Least squares Hermitian solution of the matrix equation(AXB,CXD)=(E,F)with the least norm over the skew field of quaternions[J]. Mathematical and Computer Modelling, 2008, 48(1/2):91-100. [18] YUAN Shifang, LIAO Anping, WANG Peng. Least squares η-bi-Hermitian problems of the quaternion matrix equation(AXB,CXD)=(E,F)[J]. Linear and Multilinear Algebra, 2014, 63(9):1849-1863. [19] SHENG Xingping, CHEN Guoliang. A finite iternative method for solving a pair of linear matrix equations(AXB,CXD)=(E,F)[J]. Applied Mathematics and Computation, 2007, 189(2):1350-1358. [20] CAI Jing, CHEN Guoliang. An iterative algorithm for the least squares bisymmetric solutions of the matrix equations A1XB1=C1A2XB2=C2[J]. Mathematical and Computer Modelling, 2009, 50(7/8):1237-1244. [21] 王秀平,张凤霞. 四元数矩阵方程(AXB,CXD)=(E,F)的最小范数最小二乘Hermitian解[J]. 纯粹数学与应用数学, 2020, 36(1):105-118. WANG Xiuping, ZHANG Fengxia. The minimal norm least squares Hermitian solution of the quaternion matrix equation(AXB,CXD)=(E,F)[J]. Pure and Applied Mathematics, 2020, 36(1):105-118. [22] WEI Musheng, LI Ying, ZHANG Fengxia, et al. Quaternion matrix computations[M]. New York: Nova Science Publisher, 2018. [23] CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Modeling,analysisc and control of networked evolutionary games[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415. [24] 程代展,夏元清,马宏斌,等. 矩阵代数控制与博弈[M]. 北京:北京理工大学出版社, 2017. CHENG Daizhan, XIA Yuanqing, MA Hongbin, et al. Matrix algebra control and game[M]. Beijing: Beijing Institute of Technology Press, 2017. [25] 戴华. 矩阵论[M]. 北京:科学出版社,2001. DAI Hua. Matrix theory[M]. Beijing: Science Press, 2001. [26] 程代展,齐洪胜,贺风华,等.有限集上的映射与动态过程:矩阵半张量积方法[M]. 北京:科学出版社, 2016. CHENG Daizhan, QI Hongsheng, HE Fenghua, et al. Mappings and dynamic systems over finite sets: a semi-tensor product approach[M]. Beijing: Science Press, 2016. |
[1] | 程代展,赵寅,徐相如. 混合值逻辑及其应用[J]. 山东大学学报(理学版), 2011, 46(10): 32-44. |
[2] | 凌思涛 程学汉 魏木生. 一般线性四元数矩阵方程的Hermite解[J]. J4, 2008, 43(12): 1-4. |
|