《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 32-38.doi: 10.6040/j.issn.1671-9352.0.2021.043
• • 上一篇
马广琳1,王尧1,任艳丽2*
MA Guang-lin1, WANG Yao1, REN Yan-li2*
摘要: 引入JQ环的概念。称一个环R为JQ环,如果R的Jacobson根和拟正则元集合相等。给出若干JQ环的例子,讨论了JQ环的扩张性质。
中图分类号:
[1] 刘绍学. 环与代数[M]. 北京: 科学出版社,2001. LIU Shaoxue. Rings and algebra[M]. Beijing: Science Press, 2001. [2] JAIN S K, RIZVI S T. Proceedings of the Biennial Ohio State-Denison Conference(1992)[M] // Ring Theory. Singapore: World Scientific, 1993: 102-129. [3] CHEN W, GUI S. On weakly semicommutative rings[J]. Commun Math Res, 2011, 7(2):179-192. [4] MARKS G. On 2-primal ore extension[J]. Commun Algebra, 2001, 29(5):2113-2123. [5] JIANG M, WANG Y, REN Y. Extensions and topological conditions of NJ rings[J]. Turk J Math, 2019, 43(1):44-62. [6] BIRKENMEIER G F, KIM J Y, PARKJ K. Regularity conditions and the simplicity of prime factor rings[J]. J Pure Appl Algebra, 1997, 115(3):213-230. [7] HWANG S U, JEON Y C, LEE Y. Structure and topological conditions of NI rings[J]. J Algebra, 2006, 302(1):186-199. [8] SHIN G. Prime ideals and sheaf representation of a pseudo symmetric ring[J]. T Am Math Soc, 1973, 184:43-60. [9] WANG Y, JIANG M, REN Y. Ore extensions over weakly 2-primal rings[J]. Commun Math Res, 2016, 1:70-82. [10] NICHOLSON W K, ZHOU Y. Clean general rings[J]. J Algebra, 2005, 291(1):297-311. [11] 王尧,周昊,任艳丽. 环R{D,C}的一些性质[J]. 数学的实践与认识,2020,50(12):173-181. WANG Yao, ZHOU Hao, REN Yanli. Some properties of ring R{D,C}[J]. Mathematics in Practice and Theory, 2020, 50(12):173-181. [12] NAGATA M. Local Rings[M]. New York: Interscience, 1962. [13] 王尧,任艳丽. Morita context 环的根[J]. 数学进展,2016,45(2):195-205. WANG Yao, REN Yanli. Radicals of Morita context rings[J]. Advances in Mathematics(China), 2020, 45(2):195-205. |
[1] | 王尧1, 姜美美1, 任艳丽2*. 斜多项式环的一些性质[J]. 山东大学学报(理学版), 2014, 49(06): 40-45. |
[2] | 王修建1,2,程智1,杜先能1*. 具有一对零同态的Morita context环[J]. J4, 2013, 48(6): 42-45. |
[3] | 田红岩,许新斋*,马静. 关于t-序半群[J]. J4, 2011, 46(3): 78-79. |
|