您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 32-38.doi: 10.6040/j.issn.1671-9352.0.2021.043

• • 上一篇    

JQ环的一些性质

马广琳1,王尧1,任艳丽2*   

  1. 1.南京信息工程大学数学与统计学院, 江苏 南京 210044;2.南京晓庄学院信息工程学院, 江苏 南京 211171
  • 发布日期:2021-08-09
  • 作者简介:马广琳(1994— ), 女, 硕士研究生, 研究方向为环论. E-mail:linlinguangma@163.com*通信作者简介:任艳丽(1965— ), 女, 硕士, 教授, 研究方向为环论. E-mail:renyanlisx@163.com
  • 基金资助:
    国家自然科学基金资助项目(11571165);江苏省自然科学基金资助项目(BK20181406)

Some properties of JQ rings

MA Guang-lin1, WANG Yao1, REN Yan-li2*   

  1. 1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Published:2021-08-09

摘要: 引入JQ环的概念。称一个环R为JQ环,如果R的Jacobson根和拟正则元集合相等。给出若干JQ环的例子,讨论了JQ环的扩张性质。

关键词: Jacobson根, 拟正则元, 理想扩张, Nagata扩张, Morita Context环

Abstract: The concept of JQ rings is introduced. A ring R is called a JQ ring if its Jacobson radical coincides with the set of all quasi regular elements. We give some examples of JQ rings, and discuss the extension properties of JQ rings.

Key words: Jacobson radical, quasi-regular element, ideal extension, Nagata extension, Morita Context ring

中图分类号: 

  • O153.3
[1] 刘绍学. 环与代数[M]. 北京: 科学出版社,2001. LIU Shaoxue. Rings and algebra[M]. Beijing: Science Press, 2001.
[2] JAIN S K, RIZVI S T. Proceedings of the Biennial Ohio State-Denison Conference(1992)[M] // Ring Theory. Singapore: World Scientific, 1993: 102-129.
[3] CHEN W, GUI S. On weakly semicommutative rings[J]. Commun Math Res, 2011, 7(2):179-192.
[4] MARKS G. On 2-primal ore extension[J]. Commun Algebra, 2001, 29(5):2113-2123.
[5] JIANG M, WANG Y, REN Y. Extensions and topological conditions of NJ rings[J]. Turk J Math, 2019, 43(1):44-62.
[6] BIRKENMEIER G F, KIM J Y, PARKJ K. Regularity conditions and the simplicity of prime factor rings[J]. J Pure Appl Algebra, 1997, 115(3):213-230.
[7] HWANG S U, JEON Y C, LEE Y. Structure and topological conditions of NI rings[J]. J Algebra, 2006, 302(1):186-199.
[8] SHIN G. Prime ideals and sheaf representation of a pseudo symmetric ring[J]. T Am Math Soc, 1973, 184:43-60.
[9] WANG Y, JIANG M, REN Y. Ore extensions over weakly 2-primal rings[J]. Commun Math Res, 2016, 1:70-82.
[10] NICHOLSON W K, ZHOU Y. Clean general rings[J]. J Algebra, 2005, 291(1):297-311.
[11] 王尧,周昊,任艳丽. 环R{D,C}的一些性质[J]. 数学的实践与认识,2020,50(12):173-181. WANG Yao, ZHOU Hao, REN Yanli. Some properties of ring R{D,C}[J]. Mathematics in Practice and Theory, 2020, 50(12):173-181.
[12] NAGATA M. Local Rings[M]. New York: Interscience, 1962.
[13] 王尧,任艳丽. Morita context 环的根[J]. 数学进展,2016,45(2):195-205. WANG Yao, REN Yanli. Radicals of Morita context rings[J]. Advances in Mathematics(China), 2020, 45(2):195-205.
[1] 王尧1, 姜美美1, 任艳丽2*. 斜多项式环的一些性质[J]. 山东大学学报(理学版), 2014, 49(06): 40-45.
[2] 王修建1,2,程智1,杜先能1*. 具有一对零同态的Morita context环[J]. J4, 2013, 48(6): 42-45.
[3] 田红岩,许新斋*,马静. 关于t-序半群[J]. J4, 2011, 46(3): 78-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!