您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (11): 26-36.doi: 10.6040/j.issn.1671-9352.0.2021.137

• • 上一篇    

K1∪P2∪In的匹配等价图类

高尚,马海成*   

  1. 青海民族大学数学与统计学院, 青海 西宁 810007
  • 发布日期:2022-11-10
  • 作者简介:高尚(1996— ),女,硕士,研究方向为代数图论.E-mail: 1027462041@qq.com*通信作者简介: 马海成(1965— ),男,博士,教授,研究方向为代数图论.E-mail:qhmymhc@163.com
  • 基金资助:
    国家自然科学基金资助项目(11561056);青海省自然科学基金资助项目(2022-ZJ-924);青海民族大学研究生创新项目(07M2021006)

Class of matching equivalent graphs of K1∪P2∪In

GAO Shang, MA Hai-cheng*   

  1. School of Mathematics &
    Statistics, Qinghai Minzu University, Xining 810007, Qinghai, China
  • Published:2022-11-10

摘要: 利用组合分析的方法刻画了K1∪P2∪In以及它的补图的匹配等价图类, 并且通过组合计数的方法计算了K1∪P2∪In的匹配等价图的个数

关键词: 匹配多项式, 匹配等价, 匹配唯一

Abstract: The classes of matching equivalent graphs of K1∪P2∪In and its complement are characterized by using combination analysis, the number of matching equivalent graphs of K1∪P2∪In is also calculated by using combination counting.

Key words: matching polynomial, matching equivalence, matching unique

中图分类号: 

  • O157.5
[1] GODSIL C D, GUTMAN I. On the theory of the matching polynomial[J]. Journal of Graph Theory, 1981, 5(2):137-144.
[2] BONDY J A, MURTY U S R. Graph theory[M]. New York: Springer-Verlag, 2008.
[3] KUNZ H. Location of the zeros of the partition function for some classical lattice systems[J]. Physics Letters A, 1970, 32(5):311-312.
[4] HOSOYA H. Topological index: a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bulletin of the Chemical Society of Japan, 1971, 44(9):2332-2339.
[5] FARRELL E J. An introduction to matching polynomials[J]. Journal of Combinatorial Theory: Series B, 1979, 27(1):75-86.
[6] 马海成.匹配最大根小于2的图的匹配等价类[J]. 系统科学与数学,2003,23(3):337-342. MA Haicheng. The matching equivalent classes of graphs with the maximum matching root less than 2[J]. Journal of Systems Science and Mathematical Sciences, 2003, 23(3):337-342.
[7] 马海成.匹配最大根小于等于2的图的匹配等价[J]. 数学学报,2006,49(6):1355-1360. MA Haicheng. The matching equivalence classes of graphs with the maximum matching root less than or equal to 2[J]. Acta Mathematica Sinica, 2006, 49(6):1355-1360.
[8] 马海成.两类图的匹配等价类[J]. 数学研究,2000,33(2):218-222. MA Haicheng. On the matching equivalent classes of two kind of graphs[J]. Journal of Mathematical Study, 2000, 33(2):218-222.
[9] 马海成.点并路的匹配等价图类[J]. 青海师范大学学报(自然科学版),2003,19(1):6-8, 13. MA Haicheng. The matching equivalent classes of graphs of union of a point and a path[J]. Journal of Qinghai Normal University(Natural Science Edition), 2003, 19(1):6-8, 13.
[10] 解承玲,马海成. 两个点并路的匹配等价图类[J]. 山东大学学报(理学版),2021,56(1):29-34. XIE Chengling, MA Haicheng. Matching equivalent classes of union graphs of two vertices and a path[J]. Journal of Shandong University(Natural Science), 2021, 56(1):29-34.
[11] 马海成.I形图的匹配等价图类[J]. 数学研究,2002,35(1):65-71. MA Haicheng. The matching equivalent classes of graphs of I shape[J]. Journal of Mathematical Study, 2002, 35(1):65-71.
[12] 马海成. K1∪In的匹配等价图类[J]. 兰州大学学报,2005,41(5):127-130. MA Haicheng. The matching equivalent classes of graphs of K1∪In[J]. Journal of Lanzhou University, 2005, 41(5):127-130.
[13] 詹福琴,乔友付.P2∪Im匹配等价类的完整刻画[J].数学的实践与认识,2012,42(5):209-218. ZHAN Fuqin, QIAO Youfu. A completely characterization for matching equivalent classes of P2∪Im[J]. Journal of Mathematics in Practive and Theory, 2012, 42(5):209-218.
[1] 解承玲, 马海成. 两个点并路的匹配等价图类[J]. 《山东大学学报(理学版)》, 2021, 56(1): 29-34.
[2] 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!