《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (5): 33-41.doi: 10.6040/j.issn.1671-9352.0.2021.141
• • 上一篇
曹镓玺1,王鑫2,雷光春1*
CAO Jia-xi1, WANG Xin2, LEI Guang-chun1*
摘要: 构建了使用潜热通量、显热通量、空气温度、总辐射、有效辐射、土壤温度、土壤体积含水量来模拟湿地生态系统CO2排放通量的3层BP神经网络。在确定BP神经网络拓扑结构之后,使用遗传算法取得了BP神经网络训练的最优初始阈值和权值。采用2 190组青藏高原海北高寒湿地生态系统中实测CO2通量及相应的训练数据归一化处理后,对所建立的BP神经网络进行训练和验证。验证结果显示,训练组、验证组和测试组的回归系数分别为0.942、0.935和0.938,总体回归系数为0.941,模拟值与实测值之间的均方根误差为0.92%,高寒湿地生态系统中CO2模拟通量为1.207~13.767 g/(m2·d),均值为6.008 g/(m2·〓d)。相关性分析结果显示,青藏高原海北高寒湿地生态系统中CO2通量与输入神经元的相关系数r表现为:土壤温度(0.77)>空气温度(0.72)>土壤体积含水量(0.39)>潜热通量(0.30)>显热通量(0.29)>总辐射(0.09)>有效辐射(-0.02)(P<0.01)。青藏高原海北高寒湿地生态系统中CO2通量主导因子为土壤温度和空气温度,后续建模工作中应提高这二者的权重。
中图分类号:
[1] GASBARRO F, IRALDO F, DADDI T. The drivers of multinational enterprises climate change strategies: a quantitative study on climate-related risks and opportunities[J]. Journal of Cleaner Production, 2017, 160(1):8-26. [2] 裴朔. 辽宁省碳排放影响因素分析及趋势预测[D].大连: 大连理工大学, 2020. PEI Shuo. Influencing factor and prediction of carbon emissions in Liaoning Provice[D]. Dalian: Dalian University of Technology, 2020. [3] FEARNSIDE P. Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazils Tucurui Dam as compared to fossil fuel alternatives[J]. Environmental Conservation, 1997, 24(1):64-75. [4] WATSON R T. Third assesssment report of the intergovernmental panel on climate change[M] //Climate Change 2001: Synthesis Report. Cambridge:Cambridge University Press, 2001. [5] BURNETT W, HARRISON M, FROLKING S, et al. Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(2):387-404. [6] WANG Jiaoyue, SONG Changchun, HOU Aixin, et al. Methane emission potential from freshwater marsh soils of Northeast China: response to simulated freezing-thawing cycles[J]. Wetlands, 2017, 37(3):437-445. [7] MONTENY G, BANNINK A, CHADWICK D. Greenhouse gas abatement strategies for animal husbandry[J]. Agriculture Ecosystems & Environment, 2006, 112(2):163-170. [8] 张荣涛,付晓宇,王康,等.三江平原小叶章湿地碳排放对雪被变化的短期响应[J]. 应用生态学报, 2020,31(4):262-270. ZHANG Rongtao, FU Xiaoyu, WANG Kang, et al. Short-term response of carbon emission to snow cover change in Calamagrostis angustifolia wetlands of Sanjiang Plain, Northeast China[J]. Journal of Applied Ecology, 2020, 31(4):262-270. [9] 孟焕,王琳,张仲胜,等.气候变化对中国内陆湿地空间分布和主要生态功能的影响研究[J]. 湿地科学, 2016,14(5):710-716. MENG Huan, WANG Lin, ZHANG Zhongsheng, et al. Research on the impacts of climate change on spatial distribution and main ecology functions of inland wetlands ecosystem in China[J]. Wetlands Science, 2016, 14(5):710-716. [10] 胡保安. 天鹅湖高寒湿地CO2,CH4和N2O排放对水分变化的响应[D]. 乌鲁木齐:新疆农业大学, 2017. HU Baoan. Response of CO2,CH4 and N2O emission to water change in the alpine wetland of Swan Lake[D]. Urumqi: Xinjiang Agricultural University, 2017. [11] 刘春颖,丁喜菊,谢丽君,等.湿地生态系统影响气候变化的活性气体交换通量的研究进展[J]. 中国海洋大学学报(自然科学版), 2020,50(3):8-18. LIU Chunying, DING Xiju, XIE Lijun, et al. Research progress on exchange fluxe of active gases effecting climate change in wetland ecosystem[J]. Journal of Ocean University of China(Natural Science Edition), 2020, 50(3):8-18. [12] 赵金元,马振,唐海亮.BP神经网络和多元线性回归模型对碳排放预测的比较[J]. 科技和产业, 2020,20(11):172-176. ZHAO Jinyuan, MA Zhen, TANG Hailiang. Comparison of BP neural network and multiple linear regression models for carbon emissions prediction[J]. Journal of technology and industry, 2020, 20(11):172-176. [13] 宋杰鲲,张宇.基于BP神经网络的我国碳排放情景预测[J].科学技术与工程, 2011,11(17):4108-4111. SONG Jiekun, ZHANG Yu. Scenario prediction of carbon emissions in China based on BP neural network[J]. Science Technology and Engineering, 2011, 11(17):4108-4111. [14] 张发明,王艳旭. 融合系统聚类与BP神经网络的世界碳排放预测模型研究[J]. 数学的实践与认识, 2016,46(1):77-84. ZHANG Faming, WANG Yanyu. Study on world carbon emission prediction model based on system clustering and BP neural network[J]. Mathematics in Practice and Theory, 2016, 46(1):77-84. [15] RAHMAN M, BALA B. Modelling of jute production using artificial neural networks[J]. Biosystems Engineering, 2010, 105(3):350-356. [16] KHOSHNEVISAN B, RAFIEE S, OMID M, et al. Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran[J]. Agricultural Systems, 2014, 123(3):120-127. [17] SONG Ding, YAO Guodang, XUE Meili, et al. Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model[J]. Journal of Cleaner Production, 2017, 162(20):1527-1538. [18] LIU Xi, MAO Guozhu, REN Jing, et al. How might China achieve its 2020 emissions target? a scenario analysis of energy consumption and CO2 emissions using the system dynamics model[J]. Journal of Cleaner Production, 2015, 103(15):401-410. [19] SUN Wei, LIU Mohan. Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China[J]. Journal of Cleaner Production, 2016, 122(20):144-153. [20] 陈明. MATLAB神经网络原理与实例精解[M]. 北京:清华大学出版社, 2013. CHEN Ming. Principle of MATLAB neural network and exact solution of examples[M]. Beijing: Tsinghua University Press, 2013. [21] 杨帆. 基于BP神经网络的CO2通量预测模型研究[D].哈尔滨: 东北林业大学, 2017. YANG Fan. Study on CO2 flux prediction model based on BP neural network[D]. Harbin: Northeast Forestry University, 2017. [22] 陈召月,段巍巍. 旱地农田N2O、CO2排放主要影响因素及减排措施研究进展[J]. 现代农业科技, 2020(24):140-142. CHEN Zhaoyue, DUAN Weiwei. Research progress on main influencing factors and emission reduction measures of N2O and CO2 emission in dryland farmland[J]. Modern Agricultural Science and Technology, 2020(24):140-142. [23] 杨轶宁. 基于BP神经网络的点焊接头疲劳寿命预测研究[D].昆明: 昆明理工大学, 2016. YANG Yining. Study on fatigue life prediction of spot welding joint based on BP neural network[D]. Kunming: Kunming University of Science and Technology, 2016. [24] 张雅晶,董文彬,杨拓宇,等. 基于BP神经网络的激光弯曲成形工艺参数优化[J]. 塑性工程学报, 2020(8):66-71. ZHANG Yajin, DONG Wenbin, YANG Tuoyu, et al. Optimization of laser bending process parameters based on BP neural network[J]. Journal of Plastic Engineering, 2020(8):66-71. [25] 邹伟,王荣吉,张立强,等. 基于BP神经网络的奥贝球铁的热处理工艺优化[J]. 热加工工艺, 2020, 532(6):139-142. ZOU Wei, WANG Ringji, ZHANG Liqiang, et al. Optimization of heat treatment process of ADI based on BP neural network[J]. Hot Working Technology, 2020, 532(6):139-142. [26] 王小川. MATLAB神经网络43个案例分析[M]. 北京:北京航空航天大学出版社, 2013. WANG Xiaochuan. Analysis of 43 cases of MATLAB neural network[M]. Beijing: Beihang University Press, 2013. [27] 王顺科,李艳红,李发东,等. 新疆典型淡水湖和咸水湖芦苇湿地土壤CO2、CH4和N2O排放研究[J]. 干旱区研究, 2020,37(5):1183-1193. WANG Shunke, LI Yanhong, LI Fadong, et al. Study on CO2, CH4 and N2O emission from reed wetland soil of typical freshwater lake and saltwater lake in Xinjiang[J]. Arid Area Research, 2020, 37(5):1183-1193. [28] 王莉莉,李艳红,吴浠. 艾比湖湿地土壤CO2、CH4和N2O排放通量及其影响因素研究[J]. 江西农业, 2019(24):126-129. WANG Lili, LI Yanhong, WU Xi. Study on emission fluxes of CO2, CH4 and N2O and their influencing factors in Ebinur Lake wetland soil[J]. Jiangxi Agriculture, 2019(24):126-129. [29] 王俊峰,王根绪,吴青柏. 青藏高原腹地不同退化程度高寒沼泽草甸生长季节CO2排放通量及其主要环境控制因子研究[J]. 冰川冻土, 2008,30(3):408-414. WANG Junfeng, WANG Genxu, WU Qingbai. Study on CO2 emission flux and its main environmental control factors in alpine swamp meadow with different degradation degrees in the hinterland of Qinghai-Tibet Plateau during growing season[J]. Journal of Glaciology and Geocryology, 2008, 30(3):408-414. [30] 张海宏,李林,周秉荣,等. 青藏高原高寒湿地CO2通量特征及影响因子分析[J]. 冰川冻土, 2017,39(1):54-60. ZHANG Haihong, LI Lin, ZHOU Bingrong, et al. Analysis of CO2 flux characteristics and influencing factors in alpine wetland of Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(1):54-60. [31] 柴曦,李英年,段呈. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018,42(1):6-19. CHAI Xi, LI Yingnian, DUAN Cheng. Dynamics of CO2 flux and its limiting factors in alpine shrub meadow and grassland meadow in Qinghai-Tibet Plateau[J]. Journal of Plant Ecology, 2018, 42(1):6-19. [32] 吴建国,周巧富. 青海南部高原积雪期与生长季高寒草甸土壤CO2、CH4和N2O通量的观测[J]. 环境科学, 2016,37(8):2914-2923. WU Jianguo, ZHOU Qiaofu. Observation of CO2, CH4 and N2O fluxes in alpine meadow soil during snow cover and growing season in Southern Qinghai Plateau[J]. Environmental Sciences, 2016, 37(8):2914-2923. [33] 王世杰,李子涵,罗维均. 喀斯特常绿落叶阔叶混交林旱季CO2通量特征及其影响因子[J]. 地球与环境, 2020, 337(5):4-15. WANG Shijie, LI Zihan, LUO Weijun. Characteristics of CO2 flux and its influencing factors in dry season of karst evergreen deciduous broad-leaved mixed forest[J]. Earth and Environment, 2020, 337(5):4-15. [34] 李伟成,盛海燕,蒋跃平,等. 基塘系统不同竹林土壤CO2通量特征及其影响因子[J]. 林业科学, 2018, 54(8):13-22. LI Weicheng, SHENG Haiyan, JIANG Yuepin, et al. Characteristics and influencing factors of soil CO2 flux in different bamboo forests in the pond system[J]. Journal of Forest Science, 2018, 54(8):13-22. [35] 张雷,王琳琳,张旭东,等. 随机森林算法基本思想及其在生态学中的应用:以云南松分布模拟为例[J]. 生态学报, 2014,34(3):650-659. ZHANG Lei, WANG Linlin, ZHANG Xudong, et al. The basic principle of random forest and its applications in ecology: a case study of Pinus yunnanensis[J]. Journal of Ecology, 2014, 34(3):650-659. |
[1] | 张晶, 肖智斌, 容会, 崔毅. 改进型遗传算法在网络蜘蛛上的应用[J]. 山东大学学报(理学版), 2015, 50(05): 1-6. |
[2] | 杜晓军,林柏钢,林志远,李应. 安全软件模糊测试中多种群遗传算法的研究[J]. J4, 2013, 48(7): 79-84. |
[3] | 孙飞,汪鹏君*,俞海珍,汪迪生. 基于遗传算法的三值FPRM电路面积优化[J]. J4, 2013, 48(05): 51-56. |
[4] | 马宇红1,2,孙淑芬2. 一个带中转和直销的多产品运输问题及其遗传算法[J]. J4, 2012, 47(7): 121-126. |
[5] | 吴大华,何振峰*. 对基于聚类和遗传算法的时间序列分割算法的改进[J]. J4, 2010, 45(7): 45-49. |
[6] | 许民利 孙彩群. 基于等待时间限制的服务备件多点转运库存模型研究[J]. J4, 2010, 45(3): 61-65. |
[7] | 丁然 李歧强 梁涛. 具有分解结构的多目的批处理过程短期调度模型[J]. J4, 2010, 45(1): 73-79. |
[8] | 刘冰 陆玮洁 杨国生. 遗传算法在烷基硝基苯酚类化合物的QSRR中的应用[J]. J4, 2009, 44(9): 8-11. |
[9] | . 基于遗传算法的带时间窗邮政车辆路径问题研究[J]. J4, 2009, 44(6): 46-50. |
[10] | . 基于移相法的三维面型测量系统优化算法研究[J]. J4, 2009, 44(6): 40-45. |
[11] | 何爱香,张 勇 . 基于遗传算法和决策树的肿瘤分类规则挖掘[J]. J4, 2007, 42(9): 91-95 . |
[12] | 张晓光,李 琰,王海洋 . 一种基于遗传算法QoS敏感的Web服务组合方法[J]. J4, 2007, 42(9): 56-61 . |
[13] | 洪晓芳,陈 涤*,吴世军 . 基于对策论和遗传算法的有源RC滤波器设计方法[J]. J4, 2007, 42(5): 30-33 . |
|