您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 26-32.doi: 10.6040/j.issn.1671-9352.0.2021.146

• • 上一篇    

求解广义绝对值方程的Picard-GPSS迭代法

李旭,尹晓霞   

  1. 兰州理工大学理学院, 甘肃 兰州 730050
  • 发布日期:2021-11-25
  • 作者简介:李旭(1982— ),男,博士,副教授,研究方向为数值代数及其应用. E-mail:lixu@lut.edu.cn
  • 基金资助:
    甘肃省自然科学基金资助项目(20JR5RA464)

Picard-GPSS iteration method for solving the generalized absolute value equations

LI Xu, YIN Xiao-xia   

  1. School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Published:2021-11-25

摘要: 利用内外迭代技术,构造了广义绝对值方程的Picard-GPSS迭代法,详细研究了收敛性理论。数值实验结果表明新方法的高效性,并且该方法在内迭代步数和CPU时间上均优于Picard-HSS迭代法。

关键词: 广义绝对值方程, 线性互补问题, Picard迭代, 广义正定和反Hermitian分裂

Abstract: Based on the out-inner iteration, Picard-GPSS iteration method for solving the generalized absolute value equations is established. Convergence theory is studied in detail. Numerical experiments show that the proposed method is efficient and better than the Picard-HSS iteration method in terms of inner iteration steps and CPU time.

Key words: generalized absolute value equation, linear complementarity problem, Picard iteration, generalized positive-definite and skew-Hermitian splitting

中图分类号: 

  • O241.7
[1] ROHN J. A theorem of the alternatives for the equation Ax+B|x|=b[J]. Linear and Multilinear Algebra, 2004, 52(6):421-426.
[2] COTTLE R W, PANG J S, STONE R E. The linear complementarity problem[M]. San Diego: Academic Press, 1992.
[3] SCHAFER U. On the modulus algorithm for the linear complementarity problem[J]. Operations Research Letters, 2004, 32(4):350-354.
[4] MANGASARIAN O L, MEYER R R. Absolute value equations[J]. Linear Algebra and its Applications, 2006, 419(2/3):359-367.
[5] BAI Zhongzhi. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2010, 17(6):917-933.
[6] ROHN J. On unique solvability of the absolute value equation[J]. Optimization Letters, 2009, 3(4):603-606.
[7] WU Shiliang, LI Cuixia. A note on unique solvability of the absolute value equation[J]. Optimization Letters, 2020, 14(7):1957-1960.
[8] WU Shiliang, LI Cuixia. The unique solution of the absolute value equations[J]. Applied Mathematics Letters, 2018, 76:195-200.
[9] MANGASARIAN O L. Absolute value equation solution via concave minimization[J]. Optimization Letters, 2007, 1(1):3-8.
[10] MANGASARIAN O L. Linear complementarity as absolute value equation solution[J]. Optimization Letters, 2014, 8(4):1529-1534.
[11] MANGASARIAN O L. Absolute value programming[J]. Computational Optimization and Applications, 2007, 36(1):43-53.
[12] PROKOPYEV O. On equivalent reformulations for absolute value equations[J]. Computational Optimization and Applications, 2009, 44(3):363-372.
[13] ROHN J. An algorithm for solving the absolute value equation[J]. Electronic Journal of Linear Algebra, 2009, 18:589-599.
[14] MANGASARIAN O L. A generalized Newton method for absolute value equations[J]. Optimization Letters, 2009, 3(1):101-108.
[15] ZAINALI N, LOTFI T. On developing a stable and quadratic convergent method for solving absolute value equation[J]. Journal of Computational and Applied Mathematics, 2018, 330:742-747.
[16] HAGHANI F K. On generalized Traubs method for absolute value equations[J]. Journal of Optimization Theory and Applications, 2015, 166(2):619-625.
[17] LI Cuixia. A modified generalized Newton method for absolute value equations[J]. Journal of Optimization Theory and Applications, 2016, 170(3):1055-1059.
[18] ROHN J, HOOSHYARBAKHSH V, FARHADSEFAT R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability[J]. Optimization Letters, 2014, 8(1):35-44.
[19] WANG An, CAO Yang, CHEN Jingxian. Modified Newton-type iteration methods for generalized absolute value equations[J]. Journal of Optimization Theory and Applications, 2019, 181(1):216-230.
[20] CAO Yang, SHI Quan, ZHU Senlai. A relaxed generalized Newton iteration method for generalized absolute value equation[J]. AIMS Mathematics, 2021, 6(2):1258-1275.
[21] NOOR M A, IQBAL J, NOOR K I, et al. On an iterative method for solving absolute value equations[J]. Optimization Letters, 2012, 6(5):1027-1033.
[22] BAI Zhongzhi, YANG Xi. On HSS-based iteration methods for weakly nonlinear systems[J]. Applied Numerical Mathematics, 2009, 59(12):2923-2936.
[23] SALKUYEH D K. The Picard-HSS iteration method for absolute value equations[J]. Optimization Letters, 2014, 8(8):2191-2202.
[24] MIAO Shuxin, XIONG Xiangtuan, WEN Jin. On Picard-SHSS iteration method for absolute value equation[J]. AIMS Mathematics, 2021, 6(2):1743-1753.
[25] CAO Yang, TAN Weiwei, JIANG Meiqun. A generalization of the positive-definite and skew-Hermitian splitting iteration[J]. Numerical Algebra, Control & Optimization, 2012, 2(4):811-821.
[26] BAI Z Z, GOLUB G H, NG M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2003, 24(3):603-626.
[27] BENZI M. A generalization of the Hermitian and skew-Hermitian splitting iteration[J]. SIAM Journal on Matrix Analysis and Applications, 2009, 31(2):360-374.
[28] BAI Z Z, GOLUB G H, LU L Z, et al. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM Journal on Scientific Computing, 2005, 26(3):844-863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!