《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 26-32.doi: 10.6040/j.issn.1671-9352.0.2021.146
• • 上一篇
李旭,尹晓霞
LI Xu, YIN Xiao-xia
摘要: 利用内外迭代技术,构造了广义绝对值方程的Picard-GPSS迭代法,详细研究了收敛性理论。数值实验结果表明新方法的高效性,并且该方法在内迭代步数和CPU时间上均优于Picard-HSS迭代法。
中图分类号:
[1] ROHN J. A theorem of the alternatives for the equation Ax+B|x|=b[J]. Linear and Multilinear Algebra, 2004, 52(6):421-426. [2] COTTLE R W, PANG J S, STONE R E. The linear complementarity problem[M]. San Diego: Academic Press, 1992. [3] SCHAFER U. On the modulus algorithm for the linear complementarity problem[J]. Operations Research Letters, 2004, 32(4):350-354. [4] MANGASARIAN O L, MEYER R R. Absolute value equations[J]. Linear Algebra and its Applications, 2006, 419(2/3):359-367. [5] BAI Zhongzhi. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2010, 17(6):917-933. [6] ROHN J. On unique solvability of the absolute value equation[J]. Optimization Letters, 2009, 3(4):603-606. [7] WU Shiliang, LI Cuixia. A note on unique solvability of the absolute value equation[J]. Optimization Letters, 2020, 14(7):1957-1960. [8] WU Shiliang, LI Cuixia. The unique solution of the absolute value equations[J]. Applied Mathematics Letters, 2018, 76:195-200. [9] MANGASARIAN O L. Absolute value equation solution via concave minimization[J]. Optimization Letters, 2007, 1(1):3-8. [10] MANGASARIAN O L. Linear complementarity as absolute value equation solution[J]. Optimization Letters, 2014, 8(4):1529-1534. [11] MANGASARIAN O L. Absolute value programming[J]. Computational Optimization and Applications, 2007, 36(1):43-53. [12] PROKOPYEV O. On equivalent reformulations for absolute value equations[J]. Computational Optimization and Applications, 2009, 44(3):363-372. [13] ROHN J. An algorithm for solving the absolute value equation[J]. Electronic Journal of Linear Algebra, 2009, 18:589-599. [14] MANGASARIAN O L. A generalized Newton method for absolute value equations[J]. Optimization Letters, 2009, 3(1):101-108. [15] ZAINALI N, LOTFI T. On developing a stable and quadratic convergent method for solving absolute value equation[J]. Journal of Computational and Applied Mathematics, 2018, 330:742-747. [16] HAGHANI F K. On generalized Traubs method for absolute value equations[J]. Journal of Optimization Theory and Applications, 2015, 166(2):619-625. [17] LI Cuixia. A modified generalized Newton method for absolute value equations[J]. Journal of Optimization Theory and Applications, 2016, 170(3):1055-1059. [18] ROHN J, HOOSHYARBAKHSH V, FARHADSEFAT R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability[J]. Optimization Letters, 2014, 8(1):35-44. [19] WANG An, CAO Yang, CHEN Jingxian. Modified Newton-type iteration methods for generalized absolute value equations[J]. Journal of Optimization Theory and Applications, 2019, 181(1):216-230. [20] CAO Yang, SHI Quan, ZHU Senlai. A relaxed generalized Newton iteration method for generalized absolute value equation[J]. AIMS Mathematics, 2021, 6(2):1258-1275. [21] NOOR M A, IQBAL J, NOOR K I, et al. On an iterative method for solving absolute value equations[J]. Optimization Letters, 2012, 6(5):1027-1033. [22] BAI Zhongzhi, YANG Xi. On HSS-based iteration methods for weakly nonlinear systems[J]. Applied Numerical Mathematics, 2009, 59(12):2923-2936. [23] SALKUYEH D K. The Picard-HSS iteration method for absolute value equations[J]. Optimization Letters, 2014, 8(8):2191-2202. [24] MIAO Shuxin, XIONG Xiangtuan, WEN Jin. On Picard-SHSS iteration method for absolute value equation[J]. AIMS Mathematics, 2021, 6(2):1743-1753. [25] CAO Yang, TAN Weiwei, JIANG Meiqun. A generalization of the positive-definite and skew-Hermitian splitting iteration[J]. Numerical Algebra, Control & Optimization, 2012, 2(4):811-821. [26] BAI Z Z, GOLUB G H, NG M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2003, 24(3):603-626. [27] BENZI M. A generalization of the Hermitian and skew-Hermitian splitting iteration[J]. SIAM Journal on Matrix Analysis and Applications, 2009, 31(2):360-374. [28] BAI Z Z, GOLUB G H, LU L Z, et al. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM Journal on Scientific Computing, 2005, 26(3):844-863. |
[1] | 陈月姣,张明望*. 单调线性互补问题基于核函数的满-Newton步不可行内点算法[J]. J4, 2012, 47(10): 81-88. |
|