您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (1): 1-7.doi: 10.6040/j.issn.1671-9352.0.2021.323

• •    

4种鲍肠道菌群多样性比较

郭战胜,张海涛,侯旭光*   

  1. 山东大学海洋学院, 山东 威海 264209
  • 发布日期:2021-12-21
  • 作者简介:郭战胜(1987— ),男,博士研究生,研究方向为鲍遗传育种研究. E-mail:guozhansheng@sdu.edu.cn*通信作者简介:侯旭光(1963— ),男,博士,教授,研究方向为鲍遗传育种研究. E-mail:houxuguang@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2020MC195)

Comparision of the intestinal microflora diversity of four species of abalone

GUO Zhan-sheng, ZHANG Hai-tao, HOU Xu-guang*   

  1. Marine College, Shandong University, Weihai 264209, Shandong, China
  • Published:2021-12-21

摘要: 利用16S rRNA高通量测序技术比较皱纹盘鲍、黑足鲍、黑唇鲍和杂交鲍(皱纹盘鲍♀×黑足鲍♂)菌群结构特征、多样性。结果表明,OTU数量、Shannon指数和Chao1指数均为黑足鲍最大,黑唇鲍最小;4种鲍肠道中优势菌门为变形菌门(Proteobacteria)、梭杆菌门(Fusobacteria)和软壁菌门(Tenericutes),占比达到61.93%~95.78%。其中,皱纹盘鲍、黑足鲍和杂交鲍中绝对优势菌门为变形菌门,而黑唇鲍为软壁菌门;冷泥杆属(Psychrilyobacter)、弧菌属(Vibrio)和支原体属(Mycoplasma)为4种鲍肠道的优势菌属,占比达到39.70%~53.65%;4种鲍核心菌群共有175个OTU,相对丰度超过1%的共有11个OTU;Anosim和Adonis分析均发现杂交鲍与黑唇鲍、杂交鲍与黑足鲍、皱纹盘鲍与黑唇鲍肠道菌群存在显著性差异(P<0.05); 经LefSe分析鉴定出4种鲍肠道菌群具有显著性差异的Biomarker共有7个,包括黑足鲍的6个和杂交鲍的1个。

关键词: 鲍, 高通量测序, 肠道菌群, 核心菌群

Abstract: The composition and diversity of intestinal microflora of Haliotis discus hannai, H. iris, H. rubra and the hybrid abalone(H. discus hannai ♀×H. iris ♂)were investigated using 16S rRNA high-throughput sequencing technology. The results showed that the OTU number, the values of Shannon index and Chao1 index were the highest in H. iris, and the lowest in H. rubra. The dominant phyla in the intestines of the four abalone species were Proteobacteria, Fusobacteria and Tenericutes, accounting for 61.93% to 95.78%. Among them, the absolute dominant phylum in H. discus hannai, H. iris and hybrid abalone was Proteobacteria, while that in H. rubra was Tenericutes. Psychrilyobacter, Vibrio and Mycoplasma were the predominant genera of the intestinal tract of the four species of abalone, accounting for 39.70% to 53.65%. 175 OTUs belong to the core microflora were detected in four species of abalone, a total of 11 OTUs have been found that the relative abundance exceeded 1%. Both Anosim and Adonis analyses found that the intestinal microflora differed significantly between hybrid abalone and H. rubra, hybrid abalone and H. iris, and H. discus hannai and H. rubra(P<0.05); LefSe was used to analyze the differences of microbial taxon composition among abalones and seven biomarkers were identified, including six biomarkers in H. iris and one in hybrid abalone.

Key words: abalone, high-throughput sequencing, intestinal microflora, core microflora

中图分类号: 

  • S938.8
[1] BACKHED F. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717):1915-1920.
[2] 王晨赫,周彦锋,方弟安,等. 饥饿与重摄食对河蟹肠道菌群结构的影响[J]. 水生动物学报,2019,43(4):748-755. WANG Chenhe, ZHOU Yanfeng, FANG Dian, et al. Effect of starvation and refeeding on intestinal microflora of Chinese mitten crab(Eriocheir Sinensis)[J]. Acta Hydrobiologica Sinica, 2019, 43(4):748-755.
[3] 孟晓林,李文均,聂国兴. 鱼类肠道菌群影响因子研究进展[J]. 水产学报,2019,43(1):143-155. MENG Xiaolin, LI Wenjun, NIE Guoxing. Effect of different factors on the fish intestinal microbiota[J]. Journal of Fisheries of China, 2019, 43(1):143-155.
[4] ZHANG X C, LI X H, LU J Q, et al. Quantifying the importance of external and internal sources to the gut microbiota in juvenile and adult shrimp[J]. Aquaculture, 2021, 531:735910.
[5] MENG L J, ZHANG Y, LI X X, et al. Comparative analysis of bacterial communities of water and intestines of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis)reared in aquaculture pond systems[J]. Aquaculture, 2021, 534:736334
[6] DANCKERT N P, WILSON N, PHAN-THIEN K Y, et al. The intestinal microbiome of Australian abalone, Haliotis laevigata and Haliotis laevigata×Haliotis rubra, over a 1-year period in aquaculture[J]. Aquaculture, 2021, 534:736245.
[7] ZHA Y, LINDSTRÖM E S, EILER A, et al. Different roles of environmental selection, dispersal, and drift in the assembly of intestinal microbial communities of freshwater fish with and without a stomach[J]. Frontiers in Ecology and Evolution, 2020, 8:152.
[8] 郭战胜,侯旭光. 鲍科染色体研究进展[J]. 水产科学,2016,35(5):597-602. GUO Zhansheng, HOU Xuguang. Research progress on chromosome in family Haliotidae[J]. Fisheries Science, 2016, 35(5):597-602.
[9] GOBET A, MEST L, PERENNOU M, et al. Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore[J]. Microbiome, 2018, 6:60.
[10] ZHAO J, SHI B, JIANG Q R, et al. Changes in gut-associated flora and bacterial digestive enzymes during the development stages of abalone (Haliotis diversicolor)[J]. Aquaculture, 2012, 338:147-153.
[11] VILLASANTE A, CATALAN N, ROJAS R, et al. Microbiota of the digestive gland of red abalone(Haliotis rufescens)is affected by withering syndrome[J]. Microorganisms, 2020, 8:1411.
[12] CICALA F, CISTERNA-CLIZ J A, MOORE J D, et al. Structure, dynamics and predicted functional role of the gut microbiota of the blue (Haliotis fulgens) and yellow (H. corrugata) abalone from Baja California Sur, Mexico[J]. Peer J, 2018, 6:e5830.
[13] ZHOU J, YU L, ZHANG J, et al. Characterization of the core microbiome in tobacco leaves during aging[J]. Microbiology Open, 2020, 9:e984.
[14] HARRIS J O, BURKE C M, MAGUIRE G B. Characterization of the digestive tract of greenlip abalone, Haliotis laevigata Donovan: II. Microenvironment and bacterial flora[J]. Journal of Shellfish Research, 1998, 17(4):989-994.
[15] PARKER-GRAHAM C A, EETEMADI A, YAZDI Z, et al. Effect of oxytetracycline treatment on the gastrointestinal microbiome of critically endangered white abalone(Haliotis sorenseni)treated for withering syndrome[J]. Aquaculture, 2020, 526:735411.
[16] NEL A, PLETSCHKE B I, JONES C L W, et al. Effects of kelp Ecklonia maxima inclusion in formulated feed on the growth, feed utilisation and gut microbiota of South African abalone Haliotis midae[J]. African Journal of Marine Science, 2017, 39(2):183-192.
[17] NAM B-H, JANG J, CAETANO-ANOLLES K, et al. Microbial community and functions associated with digestion of algal polysaccharides in the visceral tract of Haliotis discus hannai: Insights from metagenome and metatranscriptome analysis[J]. PLoS One, 2018, 13(10):e0205594.
[18] NELSON T M, ROGERS T L, BROWN M V. The gut bacterial community of mammals from marine and terrestrial habitats[J]. PLoS One, 2013, 8(12):e83655.
[19] WANG X Z, TANG B, LUO X, et al. Effects of temperature, diet and genotype-induced variations on the gut microbiota of abalone[J]. Aquaculture, 2020, 524:735269.
[20] LEY R E, LOZUPONE C A, HAMADY M, et al. Worlds within worlds: evolution of the vertebrate gut microbiota[J]. Nature Reviews Microbiology, 2008, 6:776-788.
[21] FERNANDEZ-PIQUER J, BOWMAN J P, ROSS T, et al. Molecular analysis of the bacterial communities in the live Pacifc oyster(Crassostrea gigas)and the influence of postharvest temperature on its structure[J]. Journal of Applied Microbiology, 2012, 112(6):1134-1143.
[22] SONG H, YU Z L, YANG M J, et al. Analysis of microbial abundance and community composition in esophagus and intestinal tract of wild veined rapa whelk(Rapana venosa)by 16S rRNA gene sequencing[J]. Journal of General and Applied Microbiology, 2018, 64:158-166.
[23] DISHAW L J, FLORES-TORRES J, LAX S, et al. The gut of geographically disparate Ciona intestinalis harbors a core microbiota[J]. PLoS One, 2014, 9(4):e93386.
[24] 张颖雪,苏洁,樊景凤,等. 海水养殖贝类弧菌病流行暴发及其环境影响因素研究进展[J]. 海洋环境科学,2020,39(3):480-487. ZHANG Yingxue, SU Jie, PAN Jingfeng, et al. Outbreaks of vibriosis in mariculture shellfish and its research progress[J]. Marine Environmental Science, 2020, 39(3):480-487.
[25] TANAKA R, SHIBATA T, MIYAKE H, et al. Temporal fluctuation in the abundance of alginate-degrading bacteria in the gut of abalone Haliotis gigantea over 1 year[J]. Aquaculture Research, 2016, 47:2899-2908.
[26] 杨求华,葛辉,方旅平,等. 池塘养殖刺参病原菌塔式弧菌的分离与鉴定[J]. 南方水产科学,2014,10(4):45-51. YANG Qiuhua, GE Hui, FANG Lüping, et al. Identification of Vibrio tubiashii isolated from diseased pond-cultured sea cucumbers (Apostichopus japonicus)[J]. South China Fisheries Science, 2014, 10(4):45-51.
[27] WANG Y, HUANG J M, WANG S L, et al. Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod bathynomus sp.[J]. Environmental Microbiology, 2016, 18:2646-2659.
[28] LYNCH M, NEUFELD J. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology, 2015, 13:217-229.
[1] 郭战胜,丁一,张海涛,侯旭光. 海水养殖循环系统不同功能区域微生物群落结构比较[J]. 《山东大学学报(理学版)》, 2021, 56(9): 21-27,49.
[2] 郭战胜,张军伟,李亮,侯旭光,张海涛,张学进. 3种鲍16S rRNA基因片段分析及系统发育研究[J]. 山东大学学报(理学版), 2017, 52(1): 1-8.
[3] 郭战胜,侯旭光,张军伟,李亮,张海涛,于海. 三种鲍腹足肌胶原多肽抗氧化性研究[J]. 山东大学学报(理学版), 2016, 51(11): 66-73.
[4] 郭战胜,侯旭光*,张海涛,郑海,施超,王帅,房孝宁. 皱纹盘鲍(Haliotis discus hannai)、黑足鲍(Haliotis iris)#br# 及其杂交F1代营养成分的比较分析[J]. 山东大学学报(理学版), 2014, 49(1): 15-19.
[5] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1-6.
[6] 张瑞,侯旭光*,郭战胜,郑海,施超. 皱纹盘鲍(Haliotis discus hannai)、黑足鲍(Haliotis iris)及其杂交F1代同工酶比较分析[J]. 山东大学学报(理学版), 2014, 49(03): 6-11.
[7] 郭战胜,侯旭光*,张海涛,郑海,施超. 皱纹盘鲍(Haliotis discus hannai)与黑足鲍(Haliotis iris)杂交育苗的初步研究[J]. J4, 2013, 48(05): 20-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!