您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 45-49.doi: 10.6040/j.issn.1671-9352.0.2021.411

• • 上一篇    

一类内交换p-群与四元数群之间的同态个数

廖青清,郭继东*,张良   

  1. 伊犁师范大学数学与统计学院, 新疆 伊宁 835000
  • 发布日期:2022-01-07
  • 作者简介:廖青清(1998— ),女,硕士研究生,研究方向为群论. E-mail:1767916013@qq.com*通信作者简介:郭继东(1965— ),男,教授,研究方向为群论. E-mail:guojd662@163.com
  • 基金资助:
    新疆维吾尔自治区高校科研计划自然科学重点项目(XJEDU2020I018)

Number of homomorphisms between intra-commutative p-groups and quaternion groups

LIAO Qing-qing, GUO Ji-dong*, ZHANG Liang   

  1. College of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China
  • Published:2022-01-07

摘要: 根据内交换p-群和四元数群的结构特征以及元素的性质,计算了一类内交换p-群和四元数群之间的同态个数,并验证了T.Asai和T.Yoshida猜想对此类群成立。

关键词: 内交换p-群, 四元数群, 群同态

Abstract: Based on the group structure and element properties of intra-commutative p-groups and quaternion groups, the number of homomorphisms from a class of intra-commutative p-groups into quaternion groups is calculated. As an application, the conjecture of T.Asai and T.Yoshida is proved to be valid for such groups.

Key words: intra-commutative p-groups, quaternion groups, group homomorphism

中图分类号: 

  • O152.6
[1] FROBENIUS G. Uber Einen fundamentalsatz der grouppentheorie[M]. Gesammelte Abhandlungen. Berlin: Springer-Verlag, 1903.
[2] YOSHIDA T. Hom(A,G),I[J]. Journal of Algebra, 1993, 156(1):125-156.
[3] ASAI T, YOSHIDA T. Hom(A,G),II[J]. Journal of Algebra,1993, 160(1):273-285.
[4] RAJKUMAR R, GAYATHRI M, ANITHA T. The number of homomorphisms from dihedral group into some finite groups[J]. Mathematical Sciences International Research Journal, 2015, 4(1):161-165.
[5] RAJKUMAR R, GAYATHRI M, ANITHA T. The number of homomorphisms from quaternion group into some finite groups[J]. International Journal of Mathematics and Its Applications, 2015, 3(3-A):23-30.
[6] RAJKUMAR R, GAYATHRI M, ANITHA T. Counting homomorphisms from quasi-dihedral group into some finite groups[J]. International Journal of Mathematics and Its Applications, 2015, 3(3-B):9-13.
[7] RAJKUMAR R, GAYATHRI M, ANITHA T. Enumeration of homomorphisms from modular group into some finite groups[J]. International Journal of Mathematics and Its Applications, 2015, 3(3-B):15-19.
[8] 李红霞,郭继东,海进科. 二面体群到一类亚循环群之间的同态个数[J]. 山东大学学报(理学版),2019,54(6):34-40. LI Hongxia, GUO Jidong, HAI Jinke. The number of homomorphisms from the dihedral group into a class of metacyclic groups[J]. Journal of Shandong University(Natural Science), 2019, 54(6):34-40.
[9] 马雪丽,郭继东,海进科. 四元数群到一类亚循环群之间的同态个数[J]. 云南大学学报(自然科学版),2019,41(3):442-448. MA Xueli, GUO Jidong, HAI Jinke. The number of homomorphisms from the quaternion group into a class of metacyclic groups[J]. Journal of Yunnan University(Natural Sciences Edition), 2019, 41(3):442-448.
[10] 李凤娇,高百俊.四元数群到一类10pn阶非交换群的同态数量[J].吉林大学学报(理学版),2020,58(5):1085-1092. LI Fengjiao, GAO Baijun. Number of homomorphisms from quaternion group to a class of non-abelian groups with order 10pn[J]. Journal of Jilin University(Science Edition), 2020, 58(5):1085-1092.
[11] 徐明曜,曲海鹏.有限p群[M]. 北京:北京大学出版社,2010. XU Mingyao, QU Haipeng. Finite p groups[M]. Beijing: Beijing University Press, 2010.
[12] 闵嗣鹤,严士健. 初等数论[M]. 北京:高等教育出版社,2006. MIN Sihe, YAN Shijian. Elementary number theory[M]. Beijing: Higher Education Press, 2006.
[13] JOHNS. A course on group theory[M]. Cambridge: Cambridge University Press, 1978.
[1] 赖吉娜,郭继东. 一类非交换群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(12): 30-36.
[2] 李凤娇,高百俊. 两类非交换群之间的同态数量[J]. 《山东大学学报(理学版)》, 2020, 55(12): 25-29.
[3] 李红霞,郭继东,海进科. 二面体群到一类亚循环群之间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 34-40.
[4] 赵艳微,海进科. 关于群同态的T.Asai和T.Yoshida问题[J]. 《山东大学学报(理学版)》, 2019, 54(2): 101-105.
[5] 李宁英,郭继东,海进科. 具有Abel直因子的群到有限群间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(12): 59-62.
[6] 张良,海进科. 亚循环群到亚循环群之间的同态个数[J]. 山东大学学报(理学版), 2018, 53(6): 17-22.
[7] 刘妮,张苗苗. 连续定向完备序半群及其范畴性质[J]. 山东大学学报(理学版), 2016, 51(6): 57-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!