《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 48-54.doi: 10.6040/j.issn.1671-9352.0.2022.461
周鑫1,2,刘淼1,2
ZHOU Xin1,2, LIU Miao1,2
摘要: L-值模是一类格值代数结构,定义在类似于模的泛代数上。首先,将经典数学中等式用模糊恒等式替代,基于L-值泛代数给出了L-值模的概念。其次, 通过模糊代数的商结构给出了L-值泛代数是L-值模的充分必要条件。 再者,给出了L-值模的基本性质。 最后, 给出了L-值子模的刻画。
中图分类号:
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [2] GOGUEN J A. L-fuzzy sets[J]. Journal of Mathematical Analysis and Applications, 1967, 18(1):145-174. [3] ROSENFELD A. Fuzzy groups[J]. Journal of Mathematical Analysis and Applications, 1971, 35(3):512-517. [4] DIXIT V N, KUMAR R, AJMAL N. On fuzzy rings[J]. Fuzzy Sets and Systems, 1992, 49(2):205-213. [5] NANDA S. Fuzzy fields and fuzzy linear spaces[J]. Fuzzy Sets and Systems, 1986, 19(1):89-94. [6] MALIK D S, MORDESON J N. Fuzzy vector spaces[J]. Information Sciences, 1991, 55(1/2/3):271-281. [7] PAN F Z. Fuzzy finitely generated modules[J]. Fuzzy Sets and Systems, 1987, 21(1):105-113. [8] LÓPEZ-PERMOUTH S R, MALIK D S. On categories of fuzzy modules[J]. Information Sciences, 1990, 52(2):211-220. [9] YEHIA S E B. Fuzzy ideals and fuzzy subalgebras of Lie algebras[J]. Fuzzy Sets and Systems, 1996, 80(2):237-244. [10] KIM C G, LEE D S. Fuzzy lie ideals and fuzzy Lie subalgebras[J]. Fuzzy Sets and Systems, 1998, 94(1):101-107. [11] FOURMAN M P, SCOTT D S. Sheaves and logic[M] //Applications of Sheaves. Berlin: Springer, 1979: 302-401. [12] HÖHLE U. Quotients with respect to similarity relations[J]. Fuzzy Sets and Systems, 1988, 27(1):31-44. [13] FILEP L. Study of fuzzy algebras and relations from a general viewpoint[J]. Computer Science, 1998, 14:49-55. [14] DEMIRCI M. Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations, part I: fuzzy functions and their applications[J]. International Journal of General Systems, 2003, 32(2):123-155. [15] DEMIRCI M. L-equivalence relations on L-fuzzy sets, L-partitions of L-fuzzy sets and their one-to-one connections[J]. International Journal of Approximate Reasoning, 2019, 111:21-34. [16] DI NOLA A, GERLA G. Lattice valued algebras [J]. Stochastica, 1987, 11(2/3):137-150. [17] KURAOKA T, SUZUKI N Y. Lattice of fuzzy subalgebras in universal algebra[J]. Algebra Universalis, 2002, 47(3):223-237. [18] FOKA S V, TONGA M. A note on the algebraicity of L-fuzzy subalgebras in universal algebra[J]. Soft Computing, 2020, 24(2):895-899. [19] SESELJA B, TEPAVCEVIC A. Ω-algebras[C] //2015 IEEE Symposium Series on Computational Intelligence. Cape Town, South Africa: IEEE, 2015: 971-975. [20] BUDIMIROVIC B, BUDIMIROVIC V, SESELJA B, et al. E-fuzzy groups[J]. Fuzzy Sets and Systems, 2016, 289:94-112. [21] SESELJA B, TEPAVCEVIC A. L-E-fuzzy lattices[J]. International Journal of Fuzzy Systems, 2015, 17(3):366-374. [22] KRAPEZ A,SESELJA B, TEPAVCEVIC A. Solving linear equations by fuzzy quasigroups techniques[J]. Information Sciences, 2019, 491:179-189. [23] SESELJA B, TEPAVCEVIC A. Ω-groups in the language of Ω-groupoids[J]. Fuzzy Sets and Systems, 2020, 397:152-167. [24] EDEGHAGBA E E. On ω-subgroup[J]. Gadau Journal of Pure and Allied Sciences, 2022, 1(1):55-67. [25] JIMENEZ J, SERRANO M L, SESELJA B, et al. Omega-rings[J]. Fuzzy Sets and Systems, 2023, 455:183-197. |
[1] | 罗清君. Quantale的L-模糊理想[J]. 《山东大学学报(理学版)》, 2019, 54(12): 63-67. |
|